Numerical Python in Astronomy and Astrophysics


Book Description

This book provides a solid foundation in the Python programming language, numerical methods, and data analysis, all embedded within the context of astronomy and astrophysics. It not only enables students to learn programming with the aid of examples from these fields but also provides ample motivation for engagement in independent research. The book opens by outlining the importance of computational methods and programming algorithms in contemporary astronomical and astrophysical research, showing why programming in Python is a good choice for beginners. The performance of basic calculations with Python is then explained with reference to, for example, Kepler’s laws of planetary motion and gravitational and tidal forces. Here, essential background knowledge is provided as necessary. Subsequent chapters are designed to teach the reader to define and use important functions in Python and to utilize numerical methods to solve differential equations and landmark dynamical problems in astrophysics. Finally, the analysis of astronomical data is discussed, with various hands-on examples as well as guidance on astronomical image analysis and applications of artificial neural networks.




Numerical Methods in Physics with Python


Book Description

A standalone text on computational physics combining idiomatic Python, foundational numerical methods, and physics applications.




Python Programs for Astronomical Solutions


Book Description

This book gives ready-made scripts of Python coding for the solution to all practical problems in Astronomy such as finding Planetary positions at any instant of time on any date, Detailed calculation of lunar and solar eclipses, past or future, with a production of visual simulations like videos, pictures and maps. It gives insight into the technics of Python-programming and in-depth knowledge of Astronomical calculations. It is a must for every astronomical enthusiast and students of computer programming.




Statistics, Data Mining, and Machine Learning in Astronomy


Book Description

As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers




Effective Computation in Physics


Book Description

More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures




Computational Physics


Book Description

This book explains the fundamentals of computational physics and describes the techniques that every physicist should know, such as finite difference methods, numerical quadrature, and the fast Fourier transform. The book offers a complete introduction to the topic at the undergraduate level, and is also suitable for the advanced student or researcher. The book begins with an introduction to Python, then moves on to a step-by-step description of the techniques of computational physics, with examples ranging from simple mechanics problems to complex calculations in quantum mechanics, electromagnetism, statistical mechanics, and more.




Data Analysis in Astronomy


Book Description

The international Workshop on "Data Analysis in Astronomy" was in tended to give a presentation of experiences that have been acqui red in data analysis and image processing, developments and appli cations that are steadly growing up in Astronomy. The quality and the quantity of ground and satellite observations require more so phisticated data analysis methods and better computational tools. The Workshop has reviewed the present state of the art, explored new methods and discussed a wide range of applications. The topics which have been selected have covered the main fields of interest for data analysis in Astronomy. The Workshop has been focused on the methods used and their significant applications. Results which gave a major contribution to the physical interpre tation of the data have been stressed in the presentations. Atten tion has been devoted to the description of operational system for data analysis in astronomy. The success of the meeting has been the results of the coordinated effort of several people from the organizers to those who presen ted a contribution and/or took part in the discussion. We wish to thank the members of the Workshop scientific committee Prof. M. Ca paccioli, Prof. G. De Biase, Prof. G. Sedmak, Prof. A. Zichichi and of the local organizing committee Dr. R. Buccheri and Dr. M.C. Macca rone together with Miss P. Savalli and Dr. A. Gabriele of the E. Majo rana Center for their support and the unvaluable part in arranging the Workshop.




Python Programming and Numerical Methods


Book Description

Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online




Modern Statistical Methods for Astronomy


Book Description

Modern Statistical Methods for Astronomy: With R Applications.




Numerical Methods for Physics


Book Description

This book covers a broad spectrum of the most important, basic numerical and analytical techniques used in physics -including ordinary and partial differential equations, linear algebra, Fourier transforms, integration and probability. Now language-independent. Features attractive new 3-D graphics. Offers new and significantly revised exercises. Replaces FORTRAN listings with C++, with updated versions of the FORTRAN programs now available on-line. Devotes a third of the book to partial differential equations-e.g., Maxwell's equations, the diffusion equation, the wave equation, etc. This numerical analysis book is designed for the programmer with a physics background. Previously published by Prentice Hall / Addison-Wesley