Shock Wave-Boundary-Layer Interactions


Book Description

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.







Turbulent Shear Layers in Supersonic Flow


Book Description

A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.




30th International Symposium on Shock Waves 1


Book Description

These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference for the participants of the ISSW30 and anyone interested in these fields.













Separated Flows and Jets


Book Description

Separated flows and jets are closely linked in a variety of applications. They are of great importance in various fields of fluid mechanics including vehicle efficiency, technical branches concerned with gas/liquid flows, atmospheric effects on various constructions, etc. Knowledge of the physics of separated flows and jets and the development of reliable control techniques are prerequisite for future progress in the field. These aspects were in focus during the IUTAM-Symposium which was held in Novosibirsk, 9-13 July, 1990. This volume contains a selection of papers presenting recent results of theoretical and numerical studies as well as experimental work on separated flows and jets. The topics include sub- and supersonic, laminar and turbulent separation as well as organized structures in separated flows and jets. The reader will find here the state of the art and major trends for research in this field of aero-hydrodynamics.




Recent Advances in Aerodynamics


Book Description

The Joint Institute for Aeronautics and Acoustics at Stanford University was established in October 1973 to provide an academic environment for long-term cooperative research between Stanford and NASA Ames Research Center. Since its establishment, the In stitute has wnducted theoretical and experimental work in the areas of aerodynamics, acoustics, fluid mechanics, flight dynamics, guid ance and control, and human factors. This research has involved Stanford faculty, research associates, graduate students, and many distinguished visitors in collaborative efforts with the research staff of NASA Ames Research Center. The occasion of the Institute's tenth anniversary was used to reflect back on where that research has brought us, and to consider where our endeavors should be directed next. Thus, an International Symposium was held to review recent advances in the fields relevant to the activities of the Institute and to discuss the areas of research to be undertaken in the future. This anniversary was also chosen a.."1 an opportunity to honor one of the Institute's founders and its di rector, Professor Krishnamurty Karamcheti. It has been his creative inspiration that has provided the ideal research environment at the Joint Institute. The International Symposium on Recent Advances in Aero dynamics and Aconstics was held at Stanford University, Stanford, California, U.S.A., August 22-26, 198:~. Thirty-five distinguished scientists were invited to present a comprehensive review on the fol lowing subject areas: unsteady aerodynamics, jets and shear layers, V /STOL aircraft aerodynamics, rotor dynamics and aerodynamics,.