Numerical Simulation of Flow Between Two Parallel Co-Rotating Discs


Book Description

The study of fluid flow between two rotating discs aims to predict flow characteristics. In this paper numerical simulation is used to investigate axisymmetric swirling flow between two parallel co-rotating discs. Methodology entails, firstly, inputing parameters from CFD software are into previos study developed dimensionless radial velocity model for flow between two discs to obtain dimensional radial velocity of the model. Secondly, previous study parameters are used to perform numerical simulation on laminar and turbulent flows between two parallel co-rotating discs. The numerical simulation results are compared to previous study results. Then comparative numerical simulations was carried out on laminar and turbulent flows using CFD software.Results obtained showed that for the this study dimensional radial velocity and previous study dimensionless radial velocity, radial velocity distribution increase proportionately from the disc surface at 0m/s to 2208.00m/s and 0 to 0.0002396 respectively, at the domain centre. And both results satisfy initial inlet and boundary conditions with resultant parabolic profiles. In the study, it is shown that turbulent flow radial velocity profile is smoother than for laminar flow. The radial velocity increases from 0 at the walls to 0.15m/s before decreasing to - 0.2m/s at the mid-centre for laminar flow while for turbulent flow the radial velocity intitially increases from 0 at the walls to 0.15m/s before decreasing to -0.06m/s at the discs centre; while for laminar flow, swirl velocity decrease from approximately 2.55m/s to 0.55m/s and for turbulent flow the swirl velocity decrease from approximately 2.84m/s to 1.62m/s. The turbulent flow swirl velocity profile seen to be smoother than for laminar flow around the discs centre. The study further showed that for fluid near the discs surfaces radial velocity net momentum is radially towards the outlet with flow laminar in the boundary layer region and the velocity turbulent towards the domain centre. For static pressure, laminar flow maximum and minimum static pressure 2.48pa and -0.033pa respectively, while for turbulent flow maximum and minimum static pressure were 0.00 and -0.0024pa. The developed previous study model can therefore be used to predict radial velocity distribution between steady axisymmetric flow between two parallel co-rotating discs.




Modelling of Convective Heat and Mass Transfer in Rotating Flows


Book Description

This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analytical solutions. The book will be a valuable read for research experts and practitioners in the field of heat and mass transfer.







Numerical Flow Simulation II


Book Description

The aim of this series is to publish promptly and in a de- tailed form new material from the field of Numerical Fluid Mechanics including the use of advanced computer systems. Published are reports on specialized conferences, workshops, research programs, and monographs. Contents: This volume contains nineteen reports on work, which is conducted since 1998 in the Collaborative Research Programme "Numerical Flow Simulation" of the Centre National de la Recherche Scientifique (CNRS) and the Deutsche Forschungsgemeinschaft (DFG). French and German engineers and mathematicians present their joint research on the topics "Development of Solution Techniques", "Crystal Growth and Melts", "Flows of Reacting Gases", and "Turbulent Flows". In the background of their work is the still strong growth of the performance of super-computer architectures, which, together with large advances in algorithms, is opening vast new application areas of numerical flow simulation in research and industrial work. Results of this programme from the period 1996 to 1998 have been presented in NNFM 66 (1998)













Numerical Flow Simulation III


Book Description

This volume contains eighteen reports on work, which has been conducted since 2000 in the Collaborative Research Programme "Numerical Flow Simulation" of the Centre National de la Recherche Scientifique (CNRS) and the Deutsche Forschungsgemeinschaft (DFG). French and German engineers and mathematicians present their joint research on the topics: "Development of Solution Techniques", "Crystal Growth and Melts", "Flows of Reacting Gases, Sound Generation" and "Turbulent Flows". In the background of their work is still the strong growth in the performance of super-computer architectures, which, together with large advances in algorithms, is opening vast new application areas of numerical flow simulation in research and industrial work. Results of this programme from the period 1996 to 1998 have been presented in NNFM 66 (1998), and NNFM75 (2001).




Laminar Flow Between Two Parallel Rotating Disks


Book Description

The viscous flow between two parallel disks rotating in the same direction with the same velocity is investigated. The fluid enters the space between the disks at a certain in radius in the radial direction. Because of the shear forces, it assumes a rotating motion with about the velocity of the disks. The centrifugal forces then build up a pressure increase in the radial direction. The arrangement corresponds to a centrifugal fluid pump, which may be advantageous if cavitation is a problem. The general equations of viscous flow are simplified by the assumption that the pressure difference normal to the disks is negligible (boundary layer assumptions). One obtains a system of parabolic partial differential equations. For large radii the deviation from rigid body rotation (with the angular velocity of the disks) is small. The linearized equations which then result are solved analytically. The velocity profiles depend upon a parameter containing e kinematic viscosity, the angular velocity and the distance of the disks, but not he radius. The non-linearized parabolic differential equations are approximated by a difference scheme and solved numerically. The results are given in non-dimensional form with the entrance velocity and the distance of the disks as parameters. Furthermore, the efficiency of the pump is computed from the gain of the total pressure and the torque at the shaft of the rotating disks.