Numerical Simulation of Scramjet Combustion in a Shock Tunnel


Book Description

Three-dimensional computational simulations of reactive flowfields within a hydrogen-fueled scramjet-like geometry experimentally tested in a free piston shock tunnel are presented. The experimental configuration (Odam and Paull, AIAA Paper 2003-5244) involves injection of hydrogen fuel into the scramjet inlet, followed by mixing, shock-induced ignition, and combustion. The predictions for both fuel-off and fuel-on conditions were observed to be sensitive to the choice of the wall temperature boundary conditions. The best comparison with experimental data were achieved through the implementation of an approach that involves a simplified conjugate heat transfer model that couples the heat conduction through the wall with the heat conduction of the fluid within the boundary layer. This approach is able to predict thermal loads on the walls of the scramjet model due to shock wave interactions and due to heat release. As such, it is able to more accurately represent the physical temperature response of the engine model. Also shown to produce very good agreement with the statistically-steady experimental data was the isothermal ghost-cell boundary condition, which is based on a simplification of the time-dependent conjugate heat transfer boundary condition. This simplified boundary condition assumes a linear temperature distribution within the wall based on the effective depth that an applied heat load would penetrate, thus, it also allows the actual wall temperature to vary in response to the applied heat load. Results for fuel-off simulations showed that the solution generated by a steady-state simulation implementing the isothermal ghost-cell wall boundary condition was very comparable with the statistically-steady solution obtained from a fully transient simulation with coupled heat conduction within the walls. When integrated in a fully time-accurate manner, the fuel-on simulations showed a striking sensitivity to the modeled rate of air ingestion into the engine. F.




Computational Study of Generic Hypersonic Vehicle Flow Fields


Book Description

The geometric data of the generic hypersonic vehicle configuration included body definitions and preliminary grids for the forebody (nose cone excluded), midsection (propulsion system excluded), and afterbody sections. This data was to be augmented by the nose section geometry (blunt conical section mated with the noncircular cross section of the forebody initial plane) along with a grid and a detailed supersonic combustion ramjet (scramjet) geometry (inlet and combustor) which should be merged with the nozzle portion of the afterbody geometry. The solutions were to be obtained by using a Navier-Stokes (NS) code such as TUFF for the nose portion, a parabolized Navier-Stokes (PNS) solver such as the UPS and STUFF codes for the forebody, a NS solver with finite rate hydrogen-air chemistry capability such as TUFF and SPARK for the scramjet and a suitable solver (NS or PNS) for the afterbody and external nozzle flows. The numerical simulation of the hypersonic propulsion system for the generic hypersonic vehicle is the major focus of this entire work. Supersonic combustion ramjet is such a propulsion system, hence the main thrust of the present task has been to establish a solution procedure for the scramjet flow. The scramjet flow is compressible, turbulent, and reacting. The fuel used is hydrogen and the combustion process proceeds at a finite rate. As a result, the solution procedure must be capable of addressing such flows. Narayan, Johnny R. Unspecified Center...







Scramjet Propulsion


Book Description










Hypersonic Vehicles


Book Description

In the aviation field there is great interest in high-speed vehicle design. Hypersonic vehicles represent the next frontier of passenger transportation to and from space. However, several design issues must be addressed, including vehicle aerodynamics and aerothermodynamics, aeroshape design optimization, aerodynamic heating, boundary layer transition, and so on. This book contains valuable contributions focusing on hypervelocity aircraft design. Topics covered include hypersonic aircraft aerodynamic and aerothermodynamic design, especially aeroshape design optimization, computational fluid dynamics, and scramjet propulsion. The book also discusses high-speed flow issues and the challenges to achieving the dream of affordable hypersonic travel. It is hoped that the information contained herein will allow for the development of safe and efficient hypersonic vehicles.