Book Description
Describes the basic theory of carrier transport, develops numerical algorithms used for transport problems or device simulations, and presents real-world examples of implementation.
Author : Kazutaka Tomizawa
Publisher : Artech House on Demand
Page : 341 pages
File Size : 37,65 MB
Release : 1993-01-01
Category : Mathematics
ISBN : 9780890066201
Describes the basic theory of carrier transport, develops numerical algorithms used for transport problems or device simulations, and presents real-world examples of implementation.
Author : Christoph Jungemann
Publisher : Springer Science & Business Media
Page : 278 pages
File Size : 13,12 MB
Release : 2012-12-06
Category : Technology & Engineering
ISBN : 3709160863
This monograph is the first on physics-based simulations of novel strained Si and SiGe devices. It provides an in-depth description of the full-band monte-carlo method for SiGe and discusses the common theoretical background of the drift-diffusion, hydrodynamic and Monte-Carlo models and their synergy.
Author : Harold L. Grubin
Publisher : Springer Science & Business Media
Page : 729 pages
File Size : 12,33 MB
Release : 2013-11-11
Category : Technology & Engineering
ISBN : 1489923829
The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES......................................... 223 C. Calandra DEEP LEVELS AT COMPOUND-SEMICONDUCTOR INTERFACES........... 253 W. Monch ENSEMBLE MONTE CARLO TECHNIqUES............................. 289 C. Jacoboni NOISE AND DIFFUSION IN SUBMICRON STRUCTURES................. 323 L. Reggiani SUPERLATTICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 . . . . . . . . . . . . K. Hess SUBMICRON LITHOGRAPHY 373 C. D. W. Wilkinson and S. P. Beaumont QUANTUM EFFECTS IN DEVICE STRUCTURES DUE TO SUBMICRON CONFINEMENT IN ONE DIMENSION.... ....................... 401 B. D. McCombe vii viii CONTENTS PHYSICS OF HETEROSTRUCTURES AND HETEROSTRUCTURE DEVICES..... 445 P. J. Price CORRELATION EFFECTS IN SHORT TIME, NONS TAT I ONARY TRANSPORT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 . . . . . . . . . . . . J. J. Niez DEVICE-DEVICE INTERACTIONS............ ...................... 503 D. K. Ferry QUANTUM TRANSPORT AND THE WIGNER FUNCTION................... 521 G. J. Iafrate FAR INFRARED MEASUREMENTS OF VELOCITY OVERSHOOT AND HOT ELECTRON DYNAMICS IN SEMICONDUCTOR DEVICES............. 577 S. J. Allen, Jr.
Author : Mykhaylo Andriychuk
Publisher : BoD – Books on Demand
Page : 662 pages
File Size : 44,38 MB
Release : 2012-09-19
Category : Computers
ISBN : 9535107496
Numerical Simulation - from Theory to Industry is the edited book containing 25 chapters and divided into four parts. Part 1 is devoted to the background and novel advances of numerical simulation; second part contains simulation applications in the macro- and micro-electrodynamics. Part 3 includes contributions related to fluid dynamics in the natural environment and scientific applications; the last, fourth part is dedicated to simulation in the industrial areas, such as power engineering, metallurgy and building. Recent numerical techniques, as well as software the most accurate and advanced in treating the physical phenomena, are applied in order to explain the investigated processes in terms of numbers. Since the numerical simulation plays a key role in both theoretical and industrial research, this book related to simulation of many physical processes, will be useful for the pure research scientists, applied mathematicians, industrial engineers, and post-graduate students.
Author : Siegfried Selberherr
Publisher : Springer
Page : 532 pages
File Size : 32,49 MB
Release : 1993
Category : Science
ISBN : 9780387825045
Author : W.H.A. SCHILDERS
Publisher : Elsevier
Page : 930 pages
File Size : 41,17 MB
Release : 2005-04-04
Category : Mathematics
ISBN : 0080459153
This special volume provides a broad overview and insight in the way numerical methods are being used to solve the wide variety of problems in the electronics industry. Furthermore its aim is to give researchers from other fields of application the opportunity to benefit from the results wich have been obtained in the electronics industry.* Complete survey of numerical methods used in the electronic industry* Each chapter is selfcontained* Presents state-of-the-art applications and methods* Internationally recognised authors
Author : Mike Golio
Publisher : CRC Press
Page : 448 pages
File Size : 44,50 MB
Release : 2017-12-19
Category : Technology & Engineering
ISBN : 135183620X
Offering a single volume reference for high frequency semiconductor devices, this handbook covers basic material characteristics, system level concerns and constraints, simulation and modeling of devices, and packaging. Individual chapters detail the properties and characteristics of each semiconductor device type, including: Varactors, Schottky diodes, transit-time devices, BJTs, HBTs, MOSFETs, MESFETs, and HEMTs. Written by leading researchers in the field, the RF and Microwave Semiconductor Device Handbook provides an excellent starting point for programs involving development, technology comparison, or acquisition of RF and wireless semiconductor devices.
Author : Joachim Piprek
Publisher : CRC Press
Page : 887 pages
File Size : 16,90 MB
Release : 2017-10-12
Category : Science
ISBN : 1498749577
Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. Gives a broad overview of concepts with concise explanations illustrated by real results. Compares different levels of modeling, from simple analytical models to complex numerical models. Discusses practical methods of model validation. Includes an overview of numerical techniques.
Author : Kevin L. Jensen
Publisher : John Wiley & Sons
Page : 1305 pages
File Size : 11,3 MB
Release : 2017-09-27
Category : Science
ISBN : 1119051762
A practical, in-depth description of the physics behind electron emission physics and its usage in science and technology Electron emission is both a fundamental phenomenon and an enabling component that lies at the very heart of modern science and technology. Written by a recognized authority in the field, with expertise in both electron emission physics and electron beam physics, An Introduction to Electron Emission provides an in-depth look at the physics behind thermal, field, photo, and secondary electron emission mechanisms, how that physics affects the beams that result through space charge and emittance growth, and explores the physics behind their utilization in an array of applications. The book addresses mathematical and numerical methods underlying electron emission, describing where the equations originated, how they are related, and how they may be correctly used to model actual sources for devices using electron beams. Writing for the beam physics and solid state communities, the author explores applications of electron emission methodology to solid state, statistical, and quantum mechanical ideas and concepts related to simulations of electron beams to condensed matter, solid state and fabrication communities. Provides an extensive description of the physics behind four electron emission mechanisms—field, photo, and secondary, and how that physics relates to factors such as space charge and emittance that affect electron beams. Introduces readers to mathematical and numerical methods, their origins, and how they may be correctly used to model actual sources for devices using electron beams Demonstrates applications of electron methodology as well as quantum mechanical concepts related to simulations of electron beams to solid state design and manufacture Designed to function as both a graduate-level text and a reference for research professionals Introduction to the Physics of Electron Emission is a valuable learning tool for postgraduates studying quantum mechanics, statistical mechanics, solid state physics, electron transport, and beam physics. It is also an indispensable resource for academic researchers and professionals who use electron sources, model electron emission, develop cathode technologies, or utilize electron beams.
Author : Dragica Vasileska
Publisher : Springer Nature
Page : 208 pages
File Size : 44,16 MB
Release : 2022-06-01
Category : Technology & Engineering
ISBN : 3031016904
Computational Electronics is devoted to state of the art numerical techniques and physical models used in the simulation of semiconductor devices from a semi-classical perspective. Computational electronics, as a part of the general Technology Computer Aided Design (TCAD) field, has become increasingly important as the cost of semiconductor manufacturing has grown exponentially, with a concurrent need to reduce the time from design to manufacture. The motivation for this volume is the need within the modeling and simulation community for a comprehensive text which spans basic drift-diffusion modeling, through energy balance and hydrodynamic models, and finally particle based simulation. One unique feature of this book is a specific focus on numerical examples, particularly the use of commercially available software in the TCAD community. The concept for this book originated from a first year graduate course on computational electronics, taught now for several years, in the Electrical Engineering Department at Arizona State University. Numerous exercises and projects were derived from this course and have been included. The prerequisite knowledge is a fundamental understanding of basic semiconductor physics, the physical models for various device technologies such as pndiodes, bipolar junction transistors, and field effect transistors.