Towards a Numerical Simulation of Supersonic Mixing & Combustion


Book Description

The design and off-design studies of the hypersonic air-breathing engines face many challenges, due to the complexity of their internal flows. The mixing and combustion processes in Supersonic-Combustion Ramjet (scramjet) engines involve complicated aerothermochemical features, such as: the interactions between shock-waves and boundary-layer, the shock induced-combustion and the recirculation zones. In this study, a numerical solver is developed and validated to be an efficient design tool capable of simulating these complicated flow features of the supersonic combustors. For the code validation, several test cases are considered to monitor the code ability to solve for the diffusive and turbulent fluxes, and the chemical source term. In addition, the code is validated by resolving the transverse sonic injection into supersonic air flow in the case of Helium injection from a flat plate, and in the case of Hydrogen injection in a single-strut scramjet engine. The effectiveness of this injection technique in mixing and flame-holding is demonstrated. The results show good agreement with the previous numerical and experimental investigations, and prove the simulator's accuracy.







Unsteady Supersonic Combustion


Book Description

This book describes the unsteady phenomena needed to understand supersonic combustion. Following an initial chapter that introduces readers to the basic concepts in and classical studies on unsteady supersonic combustion, the book highlights recent studies on unsteady phenomena, which offer insights on e.g. interactions between acoustic waves and flames, flow dominating instability, ignition instability, flame flashback, and near-blowout-limit combustion. In turn, the book discusses in detail the fundamental mechanisms of these phenomena, and puts forward practical suggestions for future scramjet design.
















Effect of Swirl on Turbulent Structures in Supersonic Jets


Book Description

Direct Numerical Simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moserl are observed. The jet core breakdown stage exhibits increased acoustic radiations. Rao, Ram Mohan and Lundgren, Thomas S. Ames Research Center NCC2-5221...