Numerical Solution of Quasi-Conservative Hyperbolic Systems - The Cylindrical Shock Problem


Book Description

The paper discusses the numerical solution of hyperbolic systems of partial differential equations which are in quasi-conservation form. A basic Lax-Wendroff like scheme is developed. In order to treat problems with discontinuous solutions an iterative procedure is proposed. The stability and convergence of the various schemes are investigated. It is shown that it is possible to have time steps considerably larger than those allowed according to the C.F.L. (Courant - Friedricks - Levy) criterion. The method is then applied to the case of converging-diverging cylindrical shock waves. Detailed behavior near the axis at the time of shock coalescence is obtained, as well as the general flow field at various times. The results are compared with Payne and the differences are pointed out. (Author).




Mathematical Aspects of Numerical Solution of Hyperbolic Systems


Book Description

This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena. The authors also address a number of original "nonclassical" problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice. This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.










Shock Waves & Explosions


Book Description

Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods




Numerical Methods for Hyperbolic Equations


Book Description

Numerical Methods for Hyperbolic Equations is a collection of 49 articles presented at the International Conference on Numerical Methods for Hyperbolic Equations: Theory and Applications (Santiago de Compostela, Spain, 4-8 July 2011). The conference was organized to honour Professor Eleuterio Toro in the month of his 65th birthday. The topics covered include: • Recent advances in the numerical computation of environmental conservation laws with source terms • Multiphase flow and porous media • Numerical methods in astrophysics • Seismology and geophysics modelling • High order methods for hyperbolic conservation laws • Numerical methods for reactive flows • Finite volume and discontinous Galerkin schemes for stiff source term problems • Methods and models for biomedical problems • Numerical methods for reactive flows The research interest of Eleuterio Toro, born in Chile on 16th July 1946, is reflected in Numerical Methods for Hyperbolic Equations, and focuses on: numerical methods for partial differential equations, with particular emphasis on methods for hyperbolic equations; design and application of new algorithms; hyperbolic partial differential equations as mathematical models of various types of processes; mathematical modelling and simulation of physico/chemical processes that include wave propagation phenomena; modelling of multiphase flows; application of models and methods to real problems. Eleuterio Toro received several honours and distinctions, including the honorary title OBE from Queen Elizabeth II (Buckingham Palace, London 2000); Distinguished Citizen of the City of Carahue (Chile, 2001); Life Fellow, Claire Hall, University of Cambridge (UK, 2003); Fellow of the Indian Society for Shock Wave Research (Bangalore, 2005); Doctor Honoris Causa (Universidad de Santiago de Chile, 2008); William Penney Fellow, University of Cambridge (UK, 2010); Doctor Honoris Causa (Universidad de la Frontera, Chile, 2012). Professor Toro is author of two books, editor of two books and author of more than 260 research works. In the last ten years he has been invited and keynote speaker in more than 100 scientific events. Professor Toro has held many visiting appointments round the world, which include several European countries, Japan, China and USA.




Handbook of Numerical Methods for Hyperbolic Problems


Book Description

Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations. Provides detailed, cutting-edge background explanations of existing algorithms and their analysis Ideal for readers working on the theoretical aspects of algorithm development and its numerical analysis Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or readers involved in applications Written by leading subject experts in each field who provide breadth and depth of content coverage




Global Classical Solutions for Quasilinear Hyperbolic Systems


Book Description

A systematic presentation of the global classical solution and the global classical discontinuous solution to quasilinear hyperbolic systems. This book is a result of the author's research on the Cauchy problem, boundary value problems, free boundary problems and the generalised Riemann problem.




Lecture Notes on Numerical Methods for Hyperbolic Equations


Book Description

This volume contains the lecture notes of the Short Course on Numerical Methods for Hyperbolic Equations (Faculty of Mathematics, University of Santiago de Compostela, Spain, 2-4 July 2011). The course was organized in recognition of Prof. Eleuterio Toro‘s contribution to education and training on numerical methods for partial differential equation




Quasilinear Hyperbolic Systems and Waves


Book Description

"The solution to quasilinear first order hyperbolic systems of equations may be interpretated in terms of waves, which belong to a certain function class and propagate in some suitable space, the work all has a common feature the fact that it adds to the understanding of what may be called nonlinear wave propagation" - preface.