Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes


Book Description

Challenging problems involvrllg jet and plume phenomena are common to many areas of fundamental and applied scientific research, and an understanding of plume and jet behaviour is essential in many geophysical and industrial contexts. For example, in the field of meteorology, where pollutant dispersal takes place by means of atmospheric jets and plumes formed either naturally under conditions of convectively-driven flow in the atmospheric boundary layer, or anthropogenically by the release of pollutants from tall chimneys. In other fields of geophysics, buoyant plumes and jets are known to play important roles in oceanic mixing processes, both at the relatively large scale (as in deep water formation by convective sinking) and at the relatively small scale (as with plume formation beneath ice leads, for example). In the industrial context, the performances of many engineering systems are determined primarily by the behaviour of buoyant plumes and jets. For example, (i) in sea outfalls, where either sewage or thermal effluents are discharged into marine and/or freshwater environments, (ii) in solar ponds, where buoyant jets are released under density interfaces, (iii) in buildings, where thermally-generated plumes affect the air quality and ventilation properties of architectural environments, (iv) in rotating machinery where fluid jet~ are used for cooling purposes, and (v) in long road and rail tunnels, where safety and ventilation prcedures rely upon an understanding of the behaviour of buoyant jets. In many other engineering and oceanographic contexts, the properties of jets and plumes are of great importance.




Jet in Supersonic Crossflow


Book Description

Based on research into jets in supersonic crossflow carried out by the authors’ team over the past 15 years, this book summarizes and presents many cutting-edge findings and analyses on this subject. It tackles the complicated mixing process of gas jets and atomization process of liquid jets in supersonic crossflow, and studies their physical mechanisms. Advanced experimental and numerical techniques are applied to further readers’ understanding of atomization, mixing, and combustion of fuel jets in supersonic crossflow, which can promote superior fuel injection design in scramjet engines. The book offers a valuable reference guide for all researchers and engineers working on the design of scramjet engines, and will also benefit graduate students majoring in aeronautical and aerospace engineering.







Analysis of the Injection of a Heated Turbulent Jet Into a Cross Flow


Book Description

An investigation has been undertaken to develop a theoretical model of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three- dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations (a number of previous studies assume a specific growth for the area). Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.




Numerical Investigations of a High Frequency Pulsed Gaseous Fuel Jet Injection Into a Supersonic Crossflow


Book Description

The investigation of fuel delivery mechanisms is a critical design point in the development of supersonic combustion ramjet (scramjet) technology. Primary challenges include proper penetration of the jet in the supersonic crossflow while keeping total pressure losses and wall drag to a minimum. To reduce drag and heat loads especially at high burner entry Mach numbers it is desirable to use a minimally intrusive means of fuel delivery. Pulsation of gaseous jets has been shown to increase penetration and mixing in subsonic flows. A limited number of experimental studies and even fewer numerical studies have suggested that when applied to supersonic crossflows, gaseous jets pulsed in the kilohertz range of frequencies improve jet penetration and mixing. To improve on the limited number of numerical studies of pulsed jets in supersonic crossflows (PJISF), 2D and 3D computational fluid dynamics (CFD) simulation models of non-excited (steady) and sinusoidally excited (pulsed) jets were constructed using ANSYS FLUENT 15.0. The 2D investigation included pulsation at 8,16, 32 and 48 kHz. These simulation results showed that pulsation at 16 kHz provided the best jet penetration improvement in the jet near field and far field among all frequencies sampled. A 3D wall-modeled Large Eddy Simulation (WMLES) was constructed with the goals resolving large scale turbulent flow structure and observing the time evolution of a jet pulsed in a supersonic crossflow, as well as to compare the effects of sinusoidal pulsation at 16 kHz with steady injection for the same flow conditions as the 2D case. A comparison of the jet trajectories between the steady and pulsed injection cases demonstrated that for sinusoidal pulsation of a jet at 16 kHz over the equivalent cycle averaged injection total pressure and momentum flux ratio, jet penetration is improved over the steady jet, up to 50% in the near field of the jet. Furthermore, improved mass concentration decay associated with jet-crossflow mixing and far field total pressure recovery has been demonstrated as a result of pulsation of the jet.




Large Eddy Simulation for Incompressible Flows


Book Description

First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."




Advanced Approaches in Turbulence


Book Description

Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis