Computational Fluid Dynamics 2004


Book Description

Those interested in state of the art in computational fluid dynamics will find this publication a valuable source of reference. The contributions are drawn from The International Conference on Computational Fluid Dynamics (ICCFD) held in 2004. The conference is staged every two years and brings together physicists, mathematicians and engineers who review and share recent advances in mathematical and computational techniques for modeling fluid dynamics.




Computational Fluid Dynamics 2006


Book Description

The International Conference on Computational Fluid Dynamics (ICCFD) is the merger of the International Conference on Numerical Methods in Fluid Dynamics, ICNMFD (since 1969) and International Symposium on Computational Fluid Dynamics, ISCFD (since 1985). It is held every two years and brings together physicists, mathematicians and engineers to review and share recent advances in mathematical and computational techniques for modeling fluid dynamics. The proceedings of the 2006 conference (ICCFD4) held in Gent, Belgium, contain a selection of refereed contributions and are meant to serve as a source of reference for all those interested in the state of the art in computational fluid mechanics.




Adaptive Compensation of Nonlinear Actuators for Flight Control Applications


Book Description

This book provides a basic understanding of adaptive control and its applications in Flight control. It discusses the designing of an adaptive feedback control system and analyzes this for flight control of linear and nonlinear aircraft models using synthetic jet actuators. It also discusses control methodologies and the application of control techniques which will help practicing flight control and active flow control researchers. It also covers modelling and control designs which will also benefit researchers from the background of fluid mechanics and health management of actuation systems. The unique feature of this book is characterization of synthetic jet actuator nonlinearities over a wide range of angles of attack, an adaptive compensation scheme for such nonlinearities, and a systematic framework for feedback control of aircraft dynamics with synthetic jet actuators.




Frontiers Of Computational Fluid Dynamics 2006


Book Description

The series of volumes to which this book belongs honors contributors who have made a major impact in computational fluid dynamics. This fourth volume in the series is dedicated to David Caughey on the occasion of his 60th birthday. The first volume was published in 1994 and was dedicated to Prof Antony Jameson. The second, dedicated to Earl Murman, was published in 1998. The third volume was dedicated to Robert MacCormack in 2002.Written by leading researchers from academia, government laboratories, and industry, the contributions in this volume present descriptions of the latest developments in techniques for numerical analysis of fluid flow problems, as well as applications to important problems in industry.




Flow Control Techniques and Applications


Book Description

Master the theory, applications and control mechanisms of flow control techniques.







Synthetic Jets


Book Description

Compiles Information from a Multitude of SourcesSynthetic jets have been used in numerous applications, and are part of an emergent field. Accumulating information from hundreds of journal articles and conference papers, Synthetic Jets: Fundamentals and Applications brings together in one book the fundamentals and applications of fluidic actuators.




Wind Turbine Aerodynamics


Book Description




Piezoelectric Aeroelastic Energy Harvesting


Book Description

Piezoelectric Aeroelastic Energy Harvesting explains the design and implementation of piezoelectric energy harvesting devices based on fluid-structure interaction. There is currently an increase in demand for low power electronic instruments in a range of settings, and recent advances have driven their energy consumption downwards. As a result, the possibility to extract energy from an operational environment is of growing significance to industry and academic research globally. This book solves problems related to the integration of smart structures with the aeroelastic system, addresses the importance of the aerodynamic model on accurate prediction of the performance of the energy harvester, describes the overall effect of the piezoelectric patch on the dynamics of the system, and explains different mechanisms for harvesting energy via fluid-structure interaction. This wealth of innovative technical information is supported by introductory chapters on piezoelectric materials, energy harvesting and circuits, and fluid structure interaction, opening this interdisciplinary topic up for readers with a range of backgrounds. - Provides new designs of piezoelectric energy harvesters for fluid-structure interaction - Explains how to correctly model aerodynamics for effective aeroelastic energy harvesting - Numerical examples allow the reader to practice the design, modeling and implementation of piezoelectric energy harvesting devices




Aerospace America


Book Description