Object identification using T-conorm/norm fusion rule


Book Description

This small chapter presents an approach providing fast reduction of total ignorance in the process of target identification. It utilizes the recently defined fusion rule based on fuzzy T-conorm/Tnorm operators, as well as all the available information from the adjoint sensor and additional information obtained from the a priori defined objective and subjective considerations, concerning relationships between the attribute components at different levels of abstraction.




Advances and Applications of DSmT for Information Fusion, Vol. 3


Book Description

This volume has about 760 pages, split into 25 chapters, from 41 contributors. First part of this book presents advances of Dezert-Smarandache Theory (DSmT) which is becoming one of the most comprehensive and flexible fusion theory based on belief functions. It can work in all fusion spaces: power set, hyper-power set, and super-power set, and has various fusion and conditioning rules that can be applied depending on each application. Some new generalized rules are introduced in this volume with codes for implementing some of them. For the qualitative fusion, the DSm Field and Linear Algebra of Refined Labels (FLARL) is proposed which can convert any numerical fusion rule to a qualitative fusion rule. When one needs to work on a refined frame of discernment, the refinement is done using Smarandache¿s algebraic codification. New interpretations and implementations of the fusion rules based on sampling techniques and referee functions are proposed, including the probabilistic proportional conflict redistribution rule. A new probabilistic transformation of mass of belief is also presented which outperforms the classical pignistic transformation in term of probabilistic information content. The second part of the book presents applications of DSmT in target tracking, in satellite image fusion, in snow-avalanche risk assessment, in multi-biometric match score fusion, in assessment of an attribute information retrieved based on the sensor data or human originated information, in sensor management, in automatic goal allocation for a planetary rover, in computer-aided medical diagnosis, in multiple camera fusion for tracking objects on ground plane, in object identification, in fusion of Electronic Support Measures allegiance report, in map regenerating forest stands, etc.




Tracking object's type changes with fuzzy based fusion rule 


Book Description

In this paper the behavior of three combinational rules for temporal/ sequential attribute data fusion for target type estimation are analyzed. The comparative analysis is based on: Dempster’s fusion rule proposed in Dempster-Shafer Theory.




Advances and Applications of DSmT for Information Fusion, Vol. IV


Book Description

The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.gallup.unm.edu/DSmT-book3.pdf) ininternational conferences, seminars, workshops and journals.




Fuzzy Models and Algorithms for Pattern Recognition and Image Processing


Book Description

Fuzzy Models and Algorithms for Pattern Recognition and Image Processing presents a comprehensive introduction of the use of fuzzy models in pattern recognition and selected topics in image processing and computer vision. Unique to this volume in the Kluwer Handbooks of Fuzzy Sets Series is the fact that this book was written in its entirety by its four authors. A single notation, presentation style, and purpose are used throughout. The result is an extensive unified treatment of many fuzzy models for pattern recognition. The main topics are clustering and classifier design, with extensive material on feature analysis relational clustering, image processing and computer vision. Also included are numerous figures, images and numerical examples that illustrate the use of various models involving applications in medicine, character and word recognition, remote sensing, military image analysis, and industrial engineering.




YinYang Bipolar Relativity: A Unifying Theory of Nature, Agents and Causality with Applications in Quantum Computing, Cognitive Informatics and Life Sciences


Book Description

YinYang bipolar relativity can trace its philosophical origins to ancient Chinese YinYang cosmology, which claims that everything has two sides or two opposite, but reciprocal, poles or energies. More specifically, this discipline is intended to be a logical unification of general relativity and quantum mechanics. YinYang Bipolar Relativity: A Unifying Theory of Nature, Agents and Causality with Applications in Quantum Computing, Cognitive Informatics and Life Sciences presents real-world applications of YinYang bipolar relativity that focus on quantum computing and agent interaction. This unique work makes complex theoretical topics, such as the ubiquitous effects of quantum entanglement, logically comprehendible to a vast audience.




Advances In Pattern Recognition - Proceedings Of The 6th International Conference


Book Description

This volume contains the latest in the series of ICAPR proceedings on the state-of-the-art of different facets of pattern recognition. These conferences have already carved out a unique position among events attended by the pattern recognition community. The contributions tackle open problems in the classic fields of image and video processing, document analysis and multimedia object retrieval as well as more advanced topics in biometrics speech and signal analysis. Many of the papers focus both on theory and application driven basic research pattern recognition.







Selected Papers on Sensor and Data Fusion


Book Description

This text presents papers covering issues in the field of sensor and data fusion. Topics include: classifier integration with multiple sensors; combining uncertain messages using belief functions; decentralized sequential detection; and fusion, propagation, and structuring belief networks.




Predictive Maintenance in Dynamic Systems


Book Description

This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments . Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet of Things. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power.