Computer Vision


Book Description

Computer Vision is the first book to take a full approach to the challenging issue of veridical 3D object representation. It introduces mathematical and conceptual advances that offer an unprecedented framework for analyzing the complex scene structure of the world. Leading theorists cover full 3D scene reconstruction, instead of the simplistic 2D planar algorithms employed in the past. They explore cutting-edge research on computational algorithms for scene analysis and present an integrated, complementary treatment of neural, behavioral, mathematical, and computational approaches. The text includes numerous graphics of complex processes, with many in color.




Object Representation in Computer Vision


Book Description

This book documents the scientific outcome of the International NSF-ARPA Workshop on Object Representation in Computer Vision, held in New York City in December 1994 with invited participants chosen among the recognized experts in the field. The volume presents the complete set of papers in revised full-length versions. In addition, the first paper is a report on the workshop in which the panel discussions as well as the conclusions and recommendations reached by the workshop participants are summarized. Altogether the volume provides an excellent, in-depth view of the state of the art in this active area of research and applications.




Object Representation in Computer Vision II


Book Description

This book constitutes the strictly refereed post-workshop proceedings of the second International Workshop on Object Representation in Computer Vision, held in conjunction with ECCV '96 in Cambridge, UK, in April 1996. The 15 revised full papers contained in the book were selected from 45 submissions for presentation at the workshop. Also included are three invited contributions based on the talks by Takeo Kanade, Jan Koenderink, and Ram Nevatia as well as a workshop report by the volume editors summarizing several panel discussions and the general state of the art in the area.




Representations and Techniques for 3D Object Recognition and Scene Interpretation


Book Description

One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions




Hierarchical Object Representations in the Visual Cortex and Computer Vision


Book Description

Over the past 40 years, neurobiology and computational neuroscience has proved that deeper understanding of visual processes in humans and non-human primates can lead to important advancements in computational perception theories and systems. One of the main difficulties that arises when designing automatic vision systems is developing a mechanism that can recognize - or simply find - an object when faced with all the possible variations that may occur in a natural scene, with the ease of the primate visual system. The area of the brain in primates that is dedicated at analyzing visual information is the visual cortex. The visual cortex performs a wide variety of complex tasks by means of simple operations. These seemingly simple operations are applied to several layers of neurons organized into a hierarchy, the layers representing increasingly complex, abstract intermediate processing stages. In this Research Topic we propose to bring together current efforts in neurophysiology and computer vision in order 1) To understand how the visual cortex encodes an object from a starting point where neurons respond to lines, bars or edges to the representation of an object at the top of the hierarchy that is invariant to illumination, size, location, viewpoint, rotation and robust to occlusions and clutter; and 2) How the design of automatic vision systems benefit from that knowledge to get closer to human accuracy, efficiency and robustness to variations.




Three-dimensional Computer Vision


Book Description

This monograph by one of the world's leading vision researchers provides a thorough, mathematically rigorous exposition of a broad and vital area in computer vision: the problems and techniques related to three-dimensional (stereo) vision and motion. The emphasis is on using geometry to solve problems in stereo and motion, with examples from navigation and object recognition. Faugeras takes up such important problems in computer vision as projective geometry, camera calibration, edge detection, stereo vision (with many examples on real images), different kinds of representations and transformations (especially 3-D rotations), uncertainty and methods of addressing it, and object representation and recognition. His theoretical account is illustrated with the results of actual working programs.Three-Dimensional Computer Vision proposes solutions to problems arising from a specific robotics scenario in which a system must perceive and act. Moving about an unknown environment, the system has to avoid static and mobile obstacles, build models of objects and places in order to be able to recognize and locate them, and characterize its own motion and that of moving objects, by providing descriptions of the corresponding three-dimensional motions. The ideas generated, however, can be used indifferent settings, resulting in a general book on computer vision that reveals the fascinating relationship of three-dimensional geometry and the imaging process.




Pattern Recognition Theory and Applications


Book Description

This book is the outcome of a NATO Advanced Study Institute on Pattern Recog nition Theory and Applications held in Spa-Balmoral, Belgium, in June 1986. This Institute was the third of a series which started in 1975 in Bandol, France, at the initia tive of Professors K. S. Fu and A. Whinston, and continued in 1981 in Oxford, UK, with Professors K. S. Fu, J. Kittler and L. -F. Pau as directors. As early as in 1981, plans were made to pursue the series in about 1986 and possibly in Belgium, with Professor K. S. Fu and the present editors as directors. Unfortunately, Ie sort en decida autrement: Professor Fu passed away in the spring of 1985. His sudden death was an irreparable loss to the scientific community and to all those who knew him as an inspiring colleague, a teacher or a dear friend. Soon after, Josef Kittler and I decided to pay a small tribute to his memory by helping some of his plans to materialize. With the support of the NATO Scientific Affairs Division, the Institute became a reality. It was therefore but natural that the proceedings of the Institute be dedicated to him. The book contains most of the papers that were presented at the Institute. Papers are grouped along major themes which hopefully represent the major areas of contem porary research. These are: 1. Statistical methods and clustering techniques 2. Probabilistic relaxation techniques 3. From Markovian to connectionist models 4.




Representation and Recognition in Vision


Book Description

Shimon Edelman bases a comprehensive approach to visual representation on the notion of correspondence between proximal (internal) and distal similarities in objects. Researchers have long sought to understand what the brain does when we see an object, what two people have in common when they see the same object, and what a "seeing" machine would need to have in common with a human visual system. Recent neurobiological and computational advances in the study of vision have now brought us close to answering these and other questions about representation. In Representation and Recognition in Vision, Shimon Edelman bases a comprehensive approach to visual representation on the notion of correspondence between proximal (internal) and distal similarities in objects. This leads to a computationally feasible and formally veridical representation of distal objects that addresses the needs of shape categorization and can be used to derive models of perceived similarity. Edelman first discusses the representational needs of various visual recognition tasks, and surveys current theories of representation in this context. He then develops a theory of representation that is related to Shepard's notion of second-order isomorphism between representations and their targets. Edelman goes beyond Shepard by specifying the conditions under which the representations can be made formally veridical. Edelman assesses his theory's performance in identification and categorization of 3D shapes and examines it in light of psychological and neurobiological data concerning the object-processing stream in primate vision. He also discusses the connections between his theory and other efforts to understand representation in the brain.




Object Recognition


Book Description

Automatie object recognition is a multidisciplinary research area using con cepts and tools from mathematics, computing, optics, psychology, pattern recognition, artificial intelligence and various other disciplines. The purpose of this research is to provide a set of coherent paradigms and algorithms for the purpose of designing systems that will ultimately emulate the functions performed by the Human Visual System (HVS). Hence, such systems should have the ability to recognise objects in two or three dimensions independently of their positions, orientations or scales in the image. The HVS is employed for tens of thousands of recognition events each day, ranging from navigation (through the recognition of landmarks or signs), right through to communication (through the recognition of characters or people themselves). Hence, the motivations behind the construction of recognition systems, which have the ability to function in the real world, is unquestionable and would serve industrial (e.g. quality control), military (e.g. automatie target recognition) and community needs (e.g. aiding the visually impaired). Scope, Content and Organisation of this Book This book provides a comprehensive, yet readable foundation to the field of object recognition from which research may be initiated or guided. It repre sents the culmination of research topics that I have either covered personally or in conjunction with my PhD students. These areas include image acqui sition, 3-D object reconstruction, object modelling, and the matching of ob jects, all of which are essential in the construction of an object recognition system.




Object Representation and Matching Based on Skeletons and Curves


Book Description

This thesis is dedicated to the problem of object recognition in the three-dimensional space. Instead of using exclusively the information typically transported by a two-dimensional image, the concept of this work additionally incorporates the third dimension, namely the depth. The depth data itself is captured by sensors capable of measuring the distance from the device's position to those objects residing inside its field of view. The actual recognition process is implemented in analogy to the Path Similarity Skeleton Graph Matching (PSSGM). Basically, this method represents a 2D object by its skeleton and uses the idea of shortest paths to describe it. Finally, the similarity between two objects is calculated based on the Hungarian method. The contribution of the current work maps this approach into the three-dimensional space and applies it to 3D objects. While one of the experiments aims at the recognition of 3D chairs and tables, another one is devoted to the registration of fully segmented vascular structures. Excellent and promising recognition results are achieved in challenging evaluation setups showing that the 3D version of the PSSGM has the potential to solve complex recognition tasks.