Handbook of Algorithms for Physical Design Automation


Book Description

The physical design flow of any project depends upon the size of the design, the technology, the number of designers, the clock frequency, and the time to do the design. As technology advances and design-styles change, physical design flows are constantly reinvented as traditional phases are removed and new ones are added to accommodate changes in technology. Handbook of Algorithms for Physical Design Automation provides a detailed overview of VLSI physical design automation, emphasizing state-of-the-art techniques, trends and improvements that have emerged during the previous decade. After a brief introduction to the modern physical design problem, basic algorithmic techniques, and partitioning, the book discusses significant advances in floorplanning representations and describes recent formulations of the floorplanning problem. The text also addresses issues of placement, net layout and optimization, routing multiple signal nets, manufacturability, physical synthesis, special nets, and designing for specialized technologies. It includes a personal perspective from Ralph Otten as he looks back on the major technical milestones in the history of physical design automation. Although several books on this topic are currently available, most are either too broad or out of date. Alternatively, proceedings and journal articles are valuable resources for researchers in this area, but the material is widely dispersed in the literature. This handbook pulls together a broad variety of perspectives on the most challenging problems in the field, and focuses on emerging problems and research results.




Design of Systems on a Chip: Design and Test


Book Description

This book is the second of two volumes addressing the design challenges associated with new generations of semiconductor technology. The various chapters are compiled from tutorials presented at workshops in recent years by prominent authors from all over the world. Technology, productivity and quality are the main aspects under consideration to establish the major requirements for the design and test of upcoming systems on a chip.







VLSI Design and Test


Book Description

This book constitutes the refereed proceedings of the 17th International Symposium on VLSI Design and Test, VDAT 2013, held in Jaipur, India, in July 2013. The 44 papers presented were carefully reviewed and selected from 162 submissions. The papers discuss the frontiers of design and test of VLSI components, circuits and systems. They are organized in topical sections on VLSI design, testing and verification, embedded systems, emerging technology.




VLSI Physical Design: From Graph Partitioning to Timing Closure


Book Description

The complexity of modern chip design requires extensive use of specialized software throughout the process. To achieve the best results, a user of this software needs a high-level understanding of the underlying mathematical models and algorithms. In addition, a developer of such software must have a keen understanding of relevant computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. This book introduces and compares the fundamental algorithms that are used during the IC physical design phase, wherein a geometric chip layout is produced starting from an abstract circuit design. This updated second edition includes recent advancements in the state-of-the-art of physical design, and builds upon foundational coverage of essential and fundamental techniques. Numerous examples and tasks with solutions increase the clarity of presentation and facilitate deeper understanding. A comprehensive set of slides is available on the Internet for each chapter, simplifying use of the book in instructional settings. “This improved, second edition of the book will continue to serve the EDA and design community well. It is a foundational text and reference for the next generation of professionals who will be called on to continue the advancement of our chip design tools and design the most advanced micro-electronics.” Dr. Leon Stok, Vice President, Electronic Design Automation, IBM Systems Group “This is the book I wish I had when I taught EDA in the past, and the one I’m using from now on.” Dr. Louis K. Scheffer, Howard Hughes Medical Institute “I would happily use this book when teaching Physical Design. I know of no other work that’s as comprehensive and up-to-date, with algorithmic focus and clear pseudocode for the key algorithms. The book is beautifully designed!” Prof. John P. Hayes, University of Michigan “The entire field of electronic design automation owes the authors a great debt for providing a single coherent source on physical design that is clear and tutorial in nature, while providing details on key state-of-the-art topics such as timing closure.” Prof. Kurt Keutzer, University of California, Berkeley “An excellent balance of the basics and more advanced concepts, presented by top experts in the field.” Prof. Sachin Sapatnekar, University of Minnesota




Physical Design for 3D Integrated Circuits


Book Description

Physical Design for 3D Integrated Circuits reveals how to effectively and optimally design 3D integrated circuits (ICs). It also analyzes the design tools for 3D circuits while exploiting the benefits of 3D technology. The book begins by offering an overview of physical design challenges with respect to conventional 2D circuits, and then each chapter delivers an in-depth look at a specific physical design topic. This comprehensive reference: Contains extensive coverage of the physical design of 2.5D/3D ICs and monolithic 3D ICs Supplies state-of-the-art solutions for challenges unique to 3D circuit design Features contributions from renowned experts in their respective fields Physical Design for 3D Integrated Circuits provides a single, convenient source of cutting-edge information for those pursuing 2.5D/3D technology.




VLSI Design and Test


Book Description

This book constitutes the proceedings of the 26th International Symposium on VLSI Design and Test, VDAT 2022, which took place in Jammu, India, in July 2022. The 32 regular papers and 16 short papers presented in this volume were carefully reviewed and selected from 220 submissions. They were organized in topical sections as follows: Devices and Technology; Sensors; Analog/Mixed Signal; Digital Design; Emerging Technologies and Memory; System Design.




Digital Logic Testing and Simulation


Book Description

Your road map for meeting today's digital testing challenges Today, digital logic devices are common in products that impact public safety, including applications in transportation and human implants. Accurate testing has become more critical to reliability, safety, and the bottom line. Yet, as digital systems become more ubiquitous and complex, the challenge of testing them has become more difficult. As one development group designing a RISC stated, "the work required to . . . test a chip of this size approached the amount of effort required to design it." A valued reference for nearly two decades, Digital Logic Testing and Simulation has been significantly revised and updated for designers and test engineers who must meet this challenge. There is no single solution to the testing problem. Organized in an easy-to-follow, sequential format, this Second Edition familiarizes the reader with the many different strategies for testing and their applications, and assesses the strengths and weaknesses of the various approaches. The book reviews the building blocks of a successful testing strategy and guides the reader on choosing the best solution for a particular application. Digital Logic Testing and Simulation, Second Edition covers such key topics as: * Binary Decision Diagrams (BDDs) and cycle-based simulation * Tester architectures/Standard Test Interface Language (STIL) * Practical algorithms written in a Hardware Design Language (HDL) * Fault tolerance * Behavioral Automatic Test Pattern Generation (ATPG) * The development of the Test Design Expert (TDX), the many obstacles encountered and lessons learned in creating this novel testing approach Up-to-date and comprehensive, Digital Logic Testing and Simulation is an important resource for anyone charged with pinpointing faulty products and assuring quality, safety, and profitability.




EDA for IC System Design, Verification, and Testing


Book Description

Presenting a comprehensive overview of the design automation algorithms, tools, and methodologies used to design integrated circuits, the Electronic Design Automation for Integrated Circuits Handbook is available in two volumes. The first volume, EDA for IC System Design, Verification, and Testing, thoroughly examines system-level design, microarchitectural design, logical verification, and testing. Chapters contributed by leading experts authoritatively discuss processor modeling and design tools, using performance metrics to select microprocessor cores for IC designs, design and verification languages, digital simulation, hardware acceleration and emulation, and much more. Save on the complete set.