Top Quark Pair Production


Book Description

Before any kind of new physics discovery could be made at the LHC, a precise understanding and measurement of the Standard Model of particle physics' processes was necessary. The book provides an introduction to top quark production in the context of the Standard Model and presents two such precise measurements of the production of top quark pairs in proton-proton collisions at a center-of-mass energy of 7 TeV that were observed with the ATLAS Experiment at the LHC. The presented measurements focus on events with one charged lepton, missing transverse energy and jets. Using novel and advanced analysis techniques as well as a good understanding of the detector, they constitute the most precise measurements of the quantity at that time.




Discovery of Single Top Quark Production


Book Description

The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking—the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of single top quark production. It documents one of the flagship measurements of the D0 experiment, a collaboration of more than 600 physicists from around the world. It describes first observation of a physical process known as “single top quark production”, which had been sought for more than 10 years before its eventual discovery in 2009. Further, his thesis describes, in detail, the innovative approach Dr. Gillberg took to this analysis. Through the use of Boosted Decision Trees, a machine-learning technique, he observed the tiny single top signal within an otherwise overwhelming background. This Doctoral Thesis has been accepted by Simon Fraser University, Burnaby, BC, Canada.







Top Quark Physics at Hadron Colliders


Book Description

This will be a required acquisition text for academic libraries. More than ten years after its discovery, still relatively little is known about the top quark, the heaviest known elementary particle. This extensive survey summarizes and reviews top-quark physics based on the precision measurements at the Fermilab Tevatron Collider, as well as examining in detail the sensitivity of these experiments to new physics. Finally, the author provides an overview of top quark physics at the Large Hadron Collider.




Particle Physics at the Year of Astronomy


Book Description

These proceedings are devoted to a wide variety of both theoretical and experimental areas in particle physics. The topics include physics at accelerators and studies of Standard Model and Beyond, neutrino and astroparticle physics, cosmology, CP Violation and rare decays, hadron physics, and new developments in quantum field theory. The papers of the volume reveal the present status and new development in the above mentioned items. In particular, the first results on measurement of LHC pp collision events are also reported.




High Energy Physics


Book Description







New Era For Cp Asymmetries: Axions And Rare Decays Of Hadrons And Leptons


Book Description

This book is dedicated to Lev Okun, who passed away in November 2015. He was a true pioneer in probing fundamental dynamics.The book has two objectives. First is to showcase Okun's impact for decades since 1963, when he published his remarkable book Weak Interaction of Elementary Particles. Second is to present the current progress of our scientific community in the studies of our Universe. New directions and possible future developments are discussed, often using the past as a guide. The authors mostly focus on CP asymmetries in the transitions of hadrons and leptons, but they also discuss their rare decays, and talk about axions and supersymmetry, and possible connections with dark matter, extra dimensions, baryogenesis and multiverse.This book is suitable for readers who know quantum mechanics and quantum field theories in general.




Higher Order QCD Corrections to Single Top Quark Production


Book Description

It is known that the LHC has a considerable discovery potential because of its large centre-of-mass energy (vs =14 TeV) and the high design luminosity. In addition, the two experiments ATLAS and CMS perform precision measurements for numerous models in physics. The increasing experimental precision demands an even higher level of accuracy on the theoretical side. For a more precise prediction of outcomes, one has to consider the corrections obtained typically from Quantum Chromodynamics (QCD). The calculation of these corrections in the high energy regime is described by perturbation theory. In the present study, multi-loop calculations in QCD, including in particular two-loop corrections for single top quark production, are considered. There are several phenomenological motivations to study single top quark production: Firstly, the process is sensitive to the electroweak Wtb-vertex; moreover, non-standard couplings can hint at physics beyond the Standard Model. Secondly, the t-channel cross section measurement provides information on the b-quark Parton Distribution Functions (PDF). Finally, single top quark production enables us to directly measure the Cabibbo-Kobayashi-Maskawa(CKM) matrix element Vtb. The next-to-next-to-leading-order (NNLO) calculation of the single top quark production has many building blocks. In this study, two blocks will be presented: one-loop corrections squared and two-loop corrections interfered with Born. Initially, the one-loop squared contribution at NNLO for single top quark production will be calculated. Before we begin with the calculation of the two-loop corrections to single top quark production, we calculate the QCD form factors of heavy quarks at NNLO, along with the axial vector coupling as a first independent check. A comparison with the relevant literature suggests that this approach is in line with generally accepted procedure. This consistency check provides a proof of the validity of our setup. In the next step, the two-loop corrections to single top quark production will be calculated. After reducing all occurring tensor integrals to scalar integrals, we apply the integration by parts method (IBP) to find the master integrals. This step is a major challenge compared to all similar calculations because of the number of variables in the problem (two Mandelstam variables s and t, the dimension d and the mass of the top quark mt as well as the mass of the W boson mw). Finally, the calculation of the three kinds of topologies – vertex corrections, double boxes and non-planar double boxes – in the two-loop contribution at NNLO calculation will be presented.




Discovery Of The Higgs Boson


Book Description

The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.