Observational Molecular Astronomy


Book Description

This is the first book for astronomers who wish to use molecular emissions as a tool to explore the Universe.




Observational Molecular Astronomy


Book Description

Molecular line emissions offer researchers exciting opportunities to learn about the evolutionary state of the Milky Way and distant galaxies. This text provides a detailed introduction to molecular astrophysics and an array of useful techniques for observing astronomical phenomena at millimetre and submillimetre wavelengths. After discussing the theoretical underpinnings of molecular observation, the authors catalogue suitable molecular tracers for many types of astronomical regions in local and distant parts of the Universe, including cold gas reservoirs primed for the formation of new stars, regions of active star formation, giant photon-dominated regions and near active galactic nuclei. Further chapters demonstrate how to obtain useful astronomical information from raw telescope data while providing recommendations for appropriate observing strategies. Replete with maps, charts and references for further reading, this handbook will suit research astronomers and graduate students interested in broadening their skill to take advantage of the new facilities now coming online.




Observational Astronomy


Book Description

Astronomy is fundamentally an observational science and as such it is important for astronomers and astrophysicists to understand how their data are collected and analyzed. This book is a comprehensive review of current observational techniques and instruments. Featuring instruments such as Spitzer, Herschel, Fermi, ALMA, Super-Kamiokande, SNO, IceCube, the Auger Observatory, LIGO and LISA, the book discusses the capabilities and limitations of different types of instruments. It explores the sources and types of noise and provides statistical tools necessary for interpreting observational data. Due to the increasingly important role of statistical analysis, the techniques of Bayesian analysis are discussed, along with sampling techniques and model comparison. With topics ranging from fundamental subjects such as optics, photometry and spectroscopy, to neutrinos, cosmic rays and gravitational waves, this book is essential for graduate students in astronomy and physics. Electronic and colour versions of selected figures are available online at www. cambridge.org/9781107010468.




Observational Astronomy


Book Description

New and updated edition of advanced undergraduate or beginning graduate textbook on observational astronomy.




To Measure the Sky


Book Description

With a lively yet rigorous and quantitative approach, this textbook introduces the fundamental topics in optical observational astronomy for undergraduates. It explains the theoretical foundations for observational practices and reviews essential physics to support students' mastery of the subject. Student understanding is strengthened through over 120 exercises and problems.




Molecular Astrophysics


Book Description

Ideal for advanced students, this comprehensive overview of molecular astrophysics bridges physics, astronomy, and physical chemistry.




Fundamentals of Radio Astronomy


Book Description

As evidenced by five Nobel Prizes in physics, radio astronomy in its 80-year history has contributed greatly to our understanding of the universe. Yet for too long, there has been no suitable textbook on radio astronomy for undergraduate students.Fundamentals of Radio Astronomy: Observational Methods is the first undergraduate-level textbook exclus




Astronomical Observations


Book Description

The construction of sensitive low noise detectors, preservation of image quality and restriction of unwanted radiation are among the concerns of this up-to-date account of optical techniques available to astronomers.




Observational Astrophysics


Book Description

Combining a critical account of observational methods (telescopes and instrumentation) with a lucid description of the Universe, including stars, galaxies and cosmology, Smith provides a comprehensive introduction to the whole of modern astrophysics beyond the solar system. The first half describes the techniques used by astronomers to observe the Universe: optical telescopes and instruments are discussed in detail, but observations at all wavelengths are covered, from radio to gamma-rays. After a short interlude describing the appearance of the sky at all wavelengths, the role of positional astronomy is highlighted. In the second half, a clear description is given of the contents of the Universe, including accounts of stellar evolution and cosmological models. Fully illustrated throughout, with exercises given in each chapter, this textbook provides a thorough introduction to astrophysics for all physics undergraduates, and a valuable background for physics graduates turning to research in astronomy.




Observational Astrophysics


Book Description

For the last twenty years astronomy has been developing dramatically. Until the nineteen-fifties, telescopes, spectrometers, and photographic plates consti tuted a relatively simple set of tools which had been refined to a high degree of perfection by the joint efforts of physicists and astronomers. Indeed these tools helped at the birth of modern astrophysics: the discovery of the expan sion of the Universe. Then came radioastronomy and the advent of electronics; the last thirty years have seen the application to astrophysics of a wealth of new experimental techniques, based on the most advanced fields of physics, and a constant interchange of ideas between physicists and astronomers. Last, but not least, modern computers have sharply reduced the burden of dealing with the information painfully extracted from the skies, whether from ever scarce photons, or from the gigantic data flows provided by satellites and large telescopes. The aim of this book is not to give an extensive overview of all the tech niques currently in use in astronomy, nor to provide detailed instructions for preparing or carrying out an astronomical project. Its purpose is methodologi cal: photons are still the main carriers of information between celestial sources and the observer. How we are to collect, sample, measure, and store this infor mation is the unifying theme of the book. Rather than the diversity of tech niques appropriate for each wavelength range, we emphasize the physical and mathematical bases which are common to all wavelength regimes.