The Distribution of the Galaxies


Book Description

This topical volume examines one of the leading problems in astronomy - how galaxies cluster in our Universe. This book, first published in 2000, describes gravitational theory, computer simulations and observations related to galaxy distribution functions. It embeds distribution functions in a broader astronomical context, including other exciting contemporary topics such as correlation functions, fractals, bound clusters, topology, percolation and minimal spanning trees. Key results are derived and the necessary gravitational physics provided to ensure the book is self-contained. Throughout the book, theory, computer simulation and observation are carefully interwoven and critically compared. The book also shows how future observations can test the theoretical models for the evolution of galaxy clustering at early times in our Universe. This clear and authoritative volume is written at a level suitable for graduate students, and will be of key interest to astronomers, cosmologists, physicists and applied statisticians.




Galaxy Formation and Evolution


Book Description

A coherent introduction for researchers in astronomy, particle physics, and cosmology on the formation and evolution of galaxies.




Fundamentals of Galaxy Dynamics, Formation and Evolution


Book Description

Galaxies, along with their underlying dark matter halos, constitute the building blocks of structure in the Universe. Of all fundamental forces, gravity is the dominant one that drives the evolution of structures from small density seeds at early times to the galaxies we see today. The interactions among myriads of stars, or dark matter particles, in a gravitating structure produce a system with fascinating connotations to thermodynamics, with some analogies and some fundamental differences. Ignacio Ferreras presents a concise introduction to extragalactic astrophysics, with emphasis on stellar dynamics, and the growth of density fluctuations in an expanding Universe. Additional chapters are devoted to smaller systems (stellar clusters) and larger ones (galaxy clusters). Fundamentals of Galaxy Dynamics, Formation and Evolution is written for advanced undergraduates and beginning postgraduate students, providing a useful tool to get up to speed in a starting research career. Some of the derivations for the most important results are presented in detail to enable students appreciate the beauty of maths as a tool to understand the workings of galaxies. Each chapter includes a set of problems to help the student advance with the material.




The Cosmic Evolution of Galaxy Structure


Book Description

Galaxies are the fundamental units of cosmic matter that make up the universe and they change in remarkable ways over 13.7 billion years of cosmic time. We are just now discovering how galaxies we can see over these billions of years are evolving from small, star forming systems to larger, more massive and passive systems at later times. This book explains the structural evolution of galaxies, how we measure it, how these measurements change with time, and how observing this reveals important information about galaxy formation and evolution. It also explains the future of the field through the use of machine learning tools, and how galaxy structure can be used as a new approach to measure unique features of the universe, such as cosmological properties and parameters.




Galaxy Morphology and Classification


Book Description

A concise and up-to-date guide to the shape of galaxies and how they can be classified, by one of the pioneers of the field.




The Evolution of The Milky Way


Book Description

This review of the most up-to-date observational and theoretical information concerning the chemical evolution of the Milky Way compares the abundances derived from field stars and clusters, giving information on the abundances and dynamics of gas.




Introduction to Galaxy Formation and Evolution


Book Description

A comprehensive examination of nearly fourteen billion years of galaxy formation and evolution, from primordial gas to present-day galaxies.




Phase Transitions in the Early Universe: Theory and Observations


Book Description

A fundamental, profound review of the key issues relating to the early universe and the physical processes that occurred in it. The interplay between cosmic microwave background radiation, large scale structure, and the dark matter problem are stressed, with a central focus on the crucial issue of the phase transitions in the early universe and their observable consequences: baryon symmetry, baryogenesis and cosmological fluctuations. There is an interplay between cosmology, statistical physics and particle physics in studying these problems, both at the theoretical and the experimental / observational levels. Special contributions are devoted to primordial and astrophysical black holes and to high energy cosmic rays and neutrino astrophysics. There is also a special section devoted to the International Space Station and its scientific utilization.




The Discovery of Cosmic Voids


Book Description

The large-scale structure of the Universe is dominated by vast voids with galaxies clustered in knots, sheets, and filaments, forming a great 'cosmic web'. In this personal account of the major astronomical developments leading to this discovery, we learn from Laird A. Thompson, a key protagonist, how the first 3D maps of galaxies were created. Using non-mathematical language, he introduces the standard model of cosmology before explaining how and why ideas about cosmic voids evolved, referencing the original maps, reproduced here. His account tells of the competing teams of observers, racing to publish their results, the theorists trying to build or update their models to explain them, and the subsequent large-scale survey efforts that continue to the present day. This is a well-documented account of the birth of a major pillar of modern cosmology, and a useful case study of the trials surrounding how this scientific discovery became accepted.




The Origin and Evolution of Galaxies


Book Description

The Origin and Evolution of Galaxies is the outstanding problem of modern cosmology. Fortunately. we have a firm cosmological framework on which to base our theories (the hot big bang) and recently there has been substantial progress in providing observations which potentially can constrain these theories. The problem of galaxy formation is. as a consequence. one involving many diverse branches of physics and astrophysics. It has been the aim of the school. and this compendium of lectures and seminars. to bring together these diverse aspects at a level enabling research workers to understand what is going on in other corners of the subject and to see how progress in each area impinges on the others. We are grateful to the contributors to this volume for allowing us considerable editorial license with their articles. We have attempted to provide a representative sample of the talks that were given at the school besides the texts of the invited lecturers. It is regrettable that for reasons of space we have had to leave out a number of other contributions.