Review of Submarine Escape Action Levels for Selected Chemicals


Book Description

On-board fires can occur on submarines after events such as collision or explosion. These fires expose crew members to toxic concentrations of combustion products such as ammonia, carbon monoxide, hydrogen chloride, and hydrogen sulfide. Exposure to these substances at high concentrations may cause toxic effects to the respiratory and central nervous system; leading possible to death. T protect crew members on disabled submarines, scientists at the U.S. Navy Health Research Center's Toxicology Detachment have proposed two exposure levels, called submarine escape action level (SEAL) 1 and SEAL 2, for each substance. SEAL 1 is the maximum concentration of a gas in a disabled submarine below which healthy submariners can be exposed for up to 10 days without encountering irreversible health effects while SEAL 2 the maximum concentration of a gas in below which healthy submariners can be exposed for up to 24 hours without experiencing irreversible health effects. SEAL 1 and SEAL 2 will not impair the functions of the respiratory system and central nervous system to the extent of impairing the ability of crew members in a disabled submarine to escape, be rescued, or perform specific tasks. Hoping to better protect the safety of submariners, the chief of the Bureau of Medicine and Surgery requested that the National Research Council (NRC) review the available toxicologic and epidemiologic data on eight gases that are likely to be produced in a disabled submarine and to evaluate independently the scientific validity of the Navy's proposed SEALs for those gases. The NRC assigned the task to the Committee on Toxicology's (COT's) Subcommittee on Submarine Escape Action Levels. The specific task of the subcommittee was to review the toxicologic, epidemiologic, and related data on ammonia, carbon monoxide, chlorine, hydrogen chloride, hydrogen cyanide, hydrogen sulfide, nitrogen dioxide, and sulfur dioxide in order to validate the Navy's proposed SEALs. The subcommittee also considered the implications of exposures at hyperbaric conditions and potential interactions between the eight gases. Review of Submarine Escape Action Levels for Selected Chemicals presents the subcommittee's findings after evaluation human data from experimental, occupational, and epidemiologic studies; data from accident reports; and experimental-animal data. The evaluations focused primarily on high-concentration inhalation exposure studies. The subcommittee's recommended SEALs are based solely on scientific data relevant to health effects. The report includes the recommendations for each gas as determined by the subcommittee as well as the Navy's original instructions for these substances.







Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants


Book Description

U.S. Navy personnel who work on submarines are in an enclosed and isolated environment for days or weeks at a time when at sea. Unlike a typical work environment, they are potentially exposed to air contaminants 24 hours a day. To protect workers from potential adverse health effects due to those conditions, the U.S. Navy has established exposure guidance levels for a number of contaminants. The Navy asked a subcommittee of the National Research Council (NRC) to review, and develop when necessary, exposure guidance levels for specific contaminants. This volume, the third in a series, recommends 1-hour and 24-hour emergency exposure guidance levels (EEGLs) and 90-day continuous exposure guidance levels (CEGLs) for acetaldehyde, hydrogen chloride, hydrogen fluoride, hydrogen sulfide, and propylene glycol dinitrate.




Acute Exposure Guideline Levels for Selected Airborne Chemicals


Book Description

This book is the eighth volume in the series Acute Exposure Guideline Levels for Selected Airborne Chemicals, and reviews AEGLs for acrolein, carbon monoxide, 1,2-dichloroethene, ethylenimine, fluorine, hydrazine, peracetic acid, propylenimine, and sulfur dioxide for scientific accuracy, completeness, and consistency with the NRC guideline reports.




Hazardous Gases


Book Description

Hazardous Gases: Risk Assessment on Environment and Human Health examines all relevant routes of exposure, inhalation, skin absorption and ingestion, and control measures of specifics hazardous gases resulting from workplace exposure from industrial processes, traffic fumes, and the degradation of waste materials and how they impacts the health and environment of workers. The book examines the risk assessment and effect of poisonous gases on the environment human health. It also covers necessary emergency guidelines, safety measures, physiological impact, hazard control measures, handling and storage of hazardous gases. Each chapter is formatted to include an introduction, historical background, physicochemical properties, physiological role discussing mechanisms of toxicity, its effect on human health as well as environment, followed by case studies and recent research on toxic gases. Hazardous Gases: Risk Assessment on Environment and Human Health is a helpful resource for academics and researchers in toxicology, occupational health and safety, and environmental sciences as well as those in the field who work to assess and mitigate the impact of toxic gases on the work environment and the health of the workforce. - Emphasizes the environmental monitoring in the workplace of hazardous materials - Includes all relevant storage and handling information required for detailing all personnel on the hazards and risks from the substances with which they work - Offers practical examples and case studies related to toxic gases and their impact on health




Niosh Pocket Guide to Chemical Hazards


Book Description

The NIOSH Pocket Guide to Chemical Hazards presents information taken from the NIOSH/OSHA Occupational Health Guidelines for Chemical Hazards, from National Institute for Occupational Safety and Health (NIOSH) criteria documents and Current Intelligence Bulletins, and from recognized references in the fields of industrial hygiene, occupational medicine, toxicology, and analytical chemistry. The information is presented in tabular form to provide a quick, convenient source of information on general industrial hygiene practices. The information in the Pocket Guide includes chemical structures or formulas, identification codes, synonyms, exposure limits, chemical and physical properties, incompatibilities and reactivities, measurement methods, respirator selections, signs and symptoms of exposure, and procedures for emergency treatment.




Health Effects of Occupational Exposure to Asphalt


Book Description

An evaluation of the health effects and other relevant data since pub. of the 1977 NIOSH "Criteria for a Recommended Standard: Occupational Exposure to Asphalt Fumes." Includes an assessment of chemistry, health, and exposure data from studies in animals and humans exposed to raw asphalt, paving and roofing asphalt fume condensates, and asphalt-based paints. Will serve as to identify future research to reduce occupational exposures to asphalt. Chapters: no. of workers potentially exposed; physical and chemical properties; exposure; human health effects; experimental studies; research needs; uses and applications; summary of occupational exposure data; and respirators.




Clinical Environmental Health and Toxic Exposures


Book Description

Now in its revised and updated Second Edition, this volume is the most comprehensive and authoritative text in the rapidly evolving field of environmental toxicology. The book provides the objective information that health professionals need to prevent environmental health problems, plan for emergencies, and evaluate toxic exposures in patients.Coverage includes safety, regulatory, and legal issues; clinical toxicology of specific organ systems; emergency medical response to hazardous materials releases; and hazards of specific industries and locations. Nearly half of the book examines all known toxins and environmental health hazards. A Brandon-Hill recommended title.




Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants


Book Description

U.S. Navy personnel who work on submarines are in an enclosed and isolated environment for days or weeks at a time when at sea. Unlike a typical work environment, they are potentially exposed to air contaminants 24 hours a day. To protect workers from potential adverse health effects due to those conditions, the U.S. Navy has established exposure guidance levels for a number of contaminants. The Navy asked a subcommittee of the National Research Council (NRC) to review, and develop when necessary, exposure guidance levels for 10 contaminants. Overall, the subcommittee found the values proposed by the Navy to be suitable for protecting human health. For a few chemicals, the committee proposed levels that were lower than those proposed by the Navy. In conducting its evaluation, the subcommittee found that there is little exposure data available on the submarine environment and echoed a previous recommendation from an earlier NRC report to conduct monitoring that would provide a complete analysis of submarine air and data on exposure of personnel to contaminants.




Toxicological Effects of Methylmercury


Book Description

Mercury is widespread in our environment. Methylmercury, one organic form of mercury, can accumulate up the aquatic food chain and lead to high concentrations in predatory fish. When consumed by humans, contaminated fish represent a public health risk. Combustion processes, especially coal-fired power plants, are major sources of mercury contamination in the environment. The U.S. Environmental Protection Agency (EPA) is considering regulating mercury emissions from those plants. Toxicological Effects of Methylmercury reviews the health effects of methylmercury and discusses the estimation of mercury exposure from measured biomarkers, how differences between individuals affect mercury toxicity, and appropriate statistical methods for analysis of the data and thoroughly compares the epidemiological studies available on methylmercury. Included are discussions of current mercury levels on public health and a delineation of the scientific aspects and policy decisions involved in the regulation of mercury. This report is a valuable resource for individuals interested in the public health effects and regulation of mercury. The report also provides an excellent example of the implications of decisions in the risk assessment process for a larger audience.