Corneal Biomechanics


Book Description

While lecturing in recent months at a number of prominent institutions, I asked some of the residents and fellows whether and how they might benefit from a book on corneal biomechanics. The typical response was the look of a deer caught in the headlights as they tried to intuit the “appropriate” answer, but had little understanding or insight as to why this would be an important and useful knowledge base for them now, or in the future. I then posed the question differently. “Would a book that explained corneal biomechanical principles and testing devices and their application in detecting eyes at risk for developing keratoconus and post-LASIK ectasia, understanding the biomechanical impact of specific types of keratorefractive surgery and riboflavin UV-A corneal collagen cross-linking, and the impact of corneal biomechanics on the fidelity of intraocular pressure measurement and risk for glaucoma progression be of interest?” Framed in this context, the answer I got was a resounding, “Yes!” Therein lies a fundamental disconnect that highlights both the opportunity and need to educate all ophthalmologists about this nascent field. This comprehensive book is strengthened by the breadth of contributions from leading experts around the world and provides an important resource for ophthalmologists at all levels of training and experience. It gives a panoramic snapshot of our understanding of corneal biomechanics today, bridging the gap between theoretical principles, testing devices that are commercially available and in development as well as current and potential future clinical applications. While there has been a long-held appreciation that all types of keratorefractive surgery have an impact and interdependence on corneal biomechanics and wound healing, the initial finite element analyses that were applied to understand radial keratotomy were limited by incorrect assumptions that the cornea was a linear, elastic, homogenous, isotropic material.1 With the advent of excimer laser vision correction, critical observations indicated that Munnerlyn’s theoretic ablation profiles did not account for either lower or higher order (e.g. spherical aberration) refractive outcomes,2 suggesting that there were important components missing from the equation—e.g., corneal biomechanics and wound healing. In a seminal editorial, Roberts3 pointed out that the cornea is not a piece of plastic, but rather a material with viscoelastic qualities. Since that time, much has been learned about spatial and depth- related patterns of collagen orientation and interweaving, as well as the biomechanical response to different keratorefractive surgeries that sever tension-bearing lamellae, as the cornea responds to and redistributes stress induced by IOP, hydration, eye rubbing, blinking and extraocular muscle forces.3-6 The first reports of post-LASIK ectasia7 highlighted the need to identify a biomechanical signature of early keratoconus as well as corneas at high risk of developing ectasia irrespective of their current topography or tomography. The introduction of two instruments into clinical use—the Ocular Response Analyzer (ORA) and the Corneal Visualization Scheimpflug Technology (Corvis ST)—that allow measurement of various biomechanical metrics further catapulted the field. The availability of these instruments in routine clinical settings allowed the systematic study of the effect of age, collagen disorders, collagen cross-linking, corneal rings, flaps of various depths, contour, sidecut angulation, pockets, and flockets, just to name of few. Future application of biomechanics to the sclera may improve our understanding of the development and prevention of myopia, as well as scleral surgeries and treatments under development for presbyopia. It was appreciated by Goldmann and Schmidt that corneal thickness and curvature would influence the measurement of applanation tonometry. The recent ability to measure some corneal biomechanical metrics have led to IOP measurement that may be more immune both to their influence and the impact of central corneal thickness (CCT). Certain chapters in this book explain how a thin cornea could be stiffer than a thick one and that stiffness is also impacted by IOP, thereby precluding simplistic attempts to adjust IOP measurements using nomograms based upon CCT alone. Also highlighted is how corneal hysteresis, the ability of the cornea to absorb and dissipate energy during the bidirectional applanation response to a linear Gaussian air puff, appears to be an independent risk factor for glaucoma progression and rate of progression.9,10 This comprehensive book starts out with a section devoted to outlining basic biomechanical principles and theories, teaching us the language of what Dupps11 has referred to as “mechanospeak”, thus providing a context and common vocabulary to better comprehend the following chapters. By first defining basic concepts such as stress-strain relationships and creep, this theoretical basis is later applied to explain the pathogenesis of corneal diseases, e.g., explaining how a focal abnormality in corneal biomechanical properties precipitates a cycle of decompensation and localized thinning and steepening, clinically expressed as ectasia progression. These early chapters further detail biomechanical differences between in-vivo and ex-vivo testing, between human and animal corneas and sclera, and between methods of testing. The second section provides a thorough description of two FDA-approved devices to measure corneal biomechanics in the clinic (i.e., the ORA and the Corvis ST), as well as an overview of potential future technologies, including OCT with air puff stimulus, ocular pulse elastography, and Brilloiun microscopy. The third and final section of the book is a thorough treatise on how to interpret the metrics derived from the waveform provided by available clinical devices; their adjunct use in ectasia risk screening; the comparative biomechanical impact of various keratorefractive surgeries and corneal procedures such as PRK, LASIK, SMILE, and corneal collagen cross-linking; the impact of corneal biomechanics on IOP measurement; and potential biomechanical markers of enhanced susceptibility to glaucoma progression. This compendium of our current knowledge of corneal biomechanics, its measurement and application, provides a strong foundation to more fully understand advances in keratorefractive and corneal surgery, diseases, and treatments, all of which are interdependent on and influence inherent corneal biomechanical properties and behavior. Both the robust aspects and limitations of our current understanding are presented, including the challenge of creating accurate and predictive finite element models that incorporate the impact of IOP, corneal thickness, geometry, and scleral properties on corneal biomechanics. This book provides a key allowing clinical ophthalmologists and researchers to grasp the basics and nuances of this exciting field and to shape it as it evolves in the future.




Webvision


Book Description




Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye


Book Description

This book focuses on the concept of ocular rigidity, the biomechanical properties and hydrodynamics of the human eye. The basics of anatomy and physiology are explored and the relevant data for the clinician are emphasized throughout the book. The engineering aspects as well as the clinical interpretation are presented to provide context. Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye summarises recent evidence on ocular rigidity, but also provides a complete presentation of the data so far. The authors have recently worked on ocular rigidity corneal and globe biomechanics and hydrodynamics and the new, up-to-date data on the subject are highlighted in each chapter. The aim is to provide the framework or the understanding of these parameters and to determine their relevance in health and disease. This book will be an essential read for all practicing ophthalmologists looking to gain a more in-depth understanding of this interesting area of research particularly in refractive surgery and glaucoma.




Anterior Segment Optical Coherence Tomography


Book Description

High-speed anterior segment optical coherence tomography (OCT) offers a non-contact method for high resolution cross-sectional and three-dimensional imaging of the cornea and the anterior segment of the eye. As the first text completely devoted to this topic, Anterior Segment Optical Coherence Tomography comprehensively explains both the scientific principles and the clinical applications of this exciting and advancing technology. Anterior Segment Optical Coherence Tomography enhances surgical planning and postoperative care for a variety of anterior segment applications by expertly explaining how abnormalities in the anterior chamber angle, cornea, iris, and lens can be identified and evaluated using the Visante OCT(TM). Inside Anterior Segment Optical Coherence Tomography, Dr. Roger Steinert and Dr. David Huang, along with 22 of the field's leading professionals, provide a wealth of useful clinical and physiological material about this new diagnostic imaging technique. Valuable images are included to assist in the pre- and postoperative assessment of various anterior segment disorders. Additionally, this unique resource contains detailed information on biometric measurements to enhance diagnostic capability. On the leading edge of anterior segment imaging: - Mapping of corneal thickness and keratoconus evaluation - Measurement of LASIK flap and stromal bed thickness - Visualization and measurement of anterior chamber angle and diagnosis of narrow angle glaucoma - Measuring the dimensions of the anterior chamber and assessing the fit of intraocular lens implants - Visualizing and measuring the results of corneal implants and lamellar procedures - Imaging through corneal opacity to see internal eye structures With the increase in popularity of anterior chamber imaging, and anterior segment OCT proving to be the best tool for high resolution biometry, Anterior Segment Optical Coherence Tomography is a must-have for anterior segment, refractive, cornea, and glaucoma surgeons.




Intraocular and Intracranial Pressure Gradient in Glaucoma


Book Description

This book focuses on the characteristic of glaucomatous optic neuropathy and its relationship with cerebrospinal fluid (CSF) pressure. It also explores the potential novel methods to manage glaucoma by adjusting CSF pressure. This book covers several interesting topics such as why normal tension glaucoma (NTG) patients still develops into glaucoma without high intraocular pressure (IOP); and whether there are factors other than IOP contributing to the pathogenesis of NTG why the role of IOP in the pathogenesis of POAG becomes vague and controversial. This book contains over 40 chapters, including numerous images from clinical patients and experiments on gross anatomy, pathological tissue, and immunohistochemistry, electronic speculum etc. The ophthalmologists and researchers can also benefit from the clinical cases. We hope this book serves as a clinical guidance with practical significant for the understanding, prevention and diagnosis of glaucoma.




Biomechanics of the Eye


Book Description

Covering all major components of the ocular system, this state-of-the-art text is essential for vision scientists, biomedical engineers, and advanced clinicians with an interest in the role of mechanics in ocular function, disease, therapeutics, and surgery. With every chapter, leading experts strengthen the arguments that biomechanics is an indispensable and rapidly evolving tool for understanding and managing ocular disease.




Diagnostics in Ocular Imaging


Book Description

This book presents a new avenue in the field of ophthalmology and sheds light on the field of eye imaging. With the increasing availability of electronic devices and their important role in both personal and professional aspects of human life, there is a growing need for perfect vision. Ophthalmic imaging is a major tool for screening and documenting eye diseases in both medical and surgical fields of ophthalmology and is also of use for ophthalmologists around the globe. The number of eye-imaging devices has increased dramatically, however undiagnosed or poorly managed eye diseases remain a significant cause of ocular and visual problems worldwide. This essential guide addresses the need for a book that is dedicated to ophthalmic imaging, covering the cornea, glaucoma, retina and orbital imaging with updates on medical and surgical aspects of the topic.




Cornea Handbook


Book Description

Cornea Handbook is your comprehensive, reference for accessing the fundamentals of corneal conditions, surgeries, and imaging technologies. Incorporating relevant information and color images, with an easy-to-understand style, this handbook is an indispensable resource for all eye care practitioners. Drs. William B. Trattler, Parag A. Majmudar, Jodi I. Luchs, and Tracy S. Swartz have written Cornea Handbook with both the novice and advanced clinician in mind. Packed with essential information on everything from basic anatomy to surgical complications, readers will find this handbook full of valuable knowledge and helpful images. Some topics covered include: * Basic anatomy and physiology * Corneal infection, inflammation, and ocular surface disorders * Metabolic and congenital disorders * Corneal dystrophies and degenerations * Traumatic and chemical injuries * Diagnostic tools with clinical examples * Surgical procedures and common complications Whether you are an ophthalmologist, optometrist, resident, or student, if you are looking for a review of corneal conditions, Cornea Handbook will be a vital addition to your ophthalmic collection and the go-to resource for your everyday use.




Optical Coherence Tomography


Book Description

Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is emerging as a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue. This book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from biomedical and clinical perspectives. The chapters are written by leading research groups, in a style comprehensible to a broad audience.




Choroidal Disorders


Book Description

Choroidal Disorders provides an overview on various chorioretinal disorders with a special emphasis on choroidal imaging. As our understanding of the choroid has significantly improved with the development of advanced optical coherence tomography (OCT) and its role in posterior segment diseases is gaining new significance, this book focuses on the related improvements, diagnostic capabilities, management and prognosis of various chorioretinal disorders. It covers conventional techniques, such as ultrasonography and indocyanine green angiography as well as the most advanced techniques, including enhanced depth imaging OCT, swept source OCT, and OCT angiography. - Concise overview of various chorioretinal disorders, with special emphasis on choroidal imaging - Written for practitioners and researchers in sensory systems (vision), ophthalmologists, and retina specialists - Covers the most advanced imaging techniques in choroidal disorders, such as enhanced depth imaging OCT, swept source OCT, and OCT angiography