Oeuvres Scientifiques / Collected Papers


Book Description

André Weil’s mathematical work has deeply influenced the mathematics of the twentieth century. Part of a three-volume set, this work collects his papers in chronological order and includes lengthy commentaries on many of the articles written by Weil himself.




Collected Papers


Book Description

This book collects the papers published by A. Borel from 1983 to 1999. About half of them are research papers, written on his own or in collaboration, on various topics pertaining mainly to algebraic or Lie groups, homogeneous spaces, arithmetic groups (L2-spectrum, automorphic forms, cohomology and covolumes), L2-cohomology of symmetric or locally symmetric spaces, and to the Oppenheim conjecture. Other publications include surveys and personal recollections (of D. Montgomery, Harish-Chandra, and A. Weil), considerations on mathematics in general and several articles of a historical nature: on the School of Mathematics at the Institute for Advanced Study, on N. Bourbaki and on selected aspects of the works of H. Weyl, C. Chevalley, E. Kolchin, J. Leray, and A. Weil. The book concludes with an essay on H. Poincaré and special relativity. Some comments on, and corrections to, a number of papers have also been added.




Oeuvres Scientifiques - Collected Papers I


Book Description

From the reviews "...All of Weil’s works except for books and lecture notes are compiled here, in strict chronological order for easy reference. But the value ... goes beyond the convenience of easy reference and accessibility. In the first place, these volumes contain several essays, letters, and addresses which were either published in obscure places (...) or not published at all. Even more valuable are the lengthy commentaries on many of the articles, written by Weil himself. These remarks serve as a guide, helping the reader place the papers in their proper context. Moreover, we have the rare opportunity of seeing a great mathematician in his later life reflecting on the development of his ideas and those of his contemporaries at various stages of his career. The sheer number of mathematical papers of fundamental significance would earn Weil’s Collected Papers a place in the library of a mathematician with an interest in number theory, algebraic geometry, representations theory, or related areas. The additional import of the mathematical history and culture in these volumes makes them even more essential." Neal Koblitz in Mathematical Reviews "...André Weil’s mathematical work has deeply influenced the mathematics of the twentieth century and the monumental (...) "Collected papers" emphasize this influence." O. Fomenko in Zentralblatt der Mathematik




A Classical Introduction to Modern Number Theory


Book Description

This well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an overview of recent progress on the arithmetic of elliptic curves.




Selected Works of Louis Neel


Book Description

One of the world's foremost authorities on magnetism, Professor Louis Neel was the recipient of the 1970 Nobel Prize in Physics. With all but ten of Neel's 150 original papers being written in French, the aim of this English edition is to bring this important work to a wider readership.




Doing Mathematics: Convention, Subject, Calculation, Analogy (2nd Edition)


Book Description

Doing Mathematics discusses some ways mathematicians and mathematical physicists do their work and the subject matters they uncover and fashion. The conventions they adopt, the subject areas they delimit, what they can prove and calculate about the physical world, and the analogies they discover and employ, all depend on the mathematics — what will work out and what won't. The cases studied include the central limit theorem of statistics, the sound of the shape of a drum, the connections between algebra and topology, and the series of rigorous proofs of the stability of matter. The many and varied solutions to the two-dimensional Ising model of ferromagnetism make sense as a whole when they are seen in an analogy developed by Richard Dedekind in the 1880s to algebraicize Riemann's function theory; by Robert Langlands' program in number theory and representation theory; and, by the analogy between one-dimensional quantum mechanics and two-dimensional classical statistical mechanics. In effect, we begin to see 'an identity in a manifold presentation of profiles,' as the phenomenologists would say.This second edition deepens the particular examples; it describe the practical role of mathematical rigor; it suggests what might be a mathematician's philosophy of mathematics; and, it shows how an 'ugly' first proof or derivation embodies essential features, only to be appreciated after many subsequent proofs. Natural scientists and mathematicians trade physical models and abstract objects, remaking them to suit their needs, discovering new roles for them as in the recent case of the Painlevé transcendents, the Tracy-Widom distribution, and Toeplitz determinants. And mathematics has provided the models and analogies, the ordinary language, for describing the everyday world, the structure of cities, or God's infinitude.




Imagining Numbers


Book Description

The book shows how the art of mathematical imagining is not as mysterious as it seems. Drawing on a variety of artistic resources the author reveals how anyone can begin to visualize the enigmatic 'imaginary numbers' that first baffled mathematicians in the 16th century.




In Search of the Riemann Zeros


Book Description

Formulated in 1859, the Riemann Hypothesis is the most celebrated and multifaceted open problem in mathematics. In essence, it states that the primes are distributed as harmoniously as possible--or, equivalently, that the Riemann zeros are located on a single vertical line, called the critical line.




The Queen of Mathematics


Book Description

This book takes the unique approach of examining number theory as it emerged in the 17th through 19th centuries. It leads to an understanding of today's research problems on the basis of their historical development. This book is a contribution to cultural history and brings a difficult subject within the reach of the serious reader.




An Introduction to Algebraic Number Theory


Book Description

This book is a translation of my book Suron Josetsu (An Introduction to Number Theory), Second Edition, published by Shokabo, Tokyo, in 1988. The translation is faithful to the original globally but, taking advantage of my being the translator of my own book, I felt completely free to reform or deform the original locally everywhere. When I sent T. Tamagawa a copy of the First Edition of the original work two years ago, he immediately pointed out that I had skipped the discussion of the class numbers of real quadratic fields in terms of continued fractions and (in a letter dated 2/15/87) sketched his idea of treating continued fractions without writing explicitly continued fractions, an approach he had first presented in his number theory lectures at Yale some years ago. Although I did not follow his approach exactly, I added to this translation a section (Section 4. 9), which nevertheless fills the gap pointed out by Tamagawa. With this addition, the present book covers at least T. Takagi's Shoto Seisuron Kogi (Lectures on Elementary Number Theory), First Edition (Kyoritsu, 1931), which, in turn, covered at least Dirichlet's Vorlesungen. It is customary to assume basic concepts of algebra (up to, say, Galois theory) in writing a textbook of algebraic number theory. But I feel a little strange if I assume Galois theory and prove Gauss quadratic reciprocity.