Offshore Risk Assessment vol 1.


Book Description

Offshore Risk Assessment was the first book to deal with quantified risk assessment (QRA) as applied specifically to offshore installations and operations. Risk assessment techniques have been used for more than three decades in the offshore oil and gas industry, and their use is set to expand increasingly as the industry moves into new areas and faces new challenges in older regions. This updated and expanded third edition has been informed by a major R&D program on offshore risk assessment in Norway and summarizes research from 2006 to the present day. Rooted with a thorough discussion of risk metrics and risk analysis methodology, subsequent chapters are devoted to analytical approaches to escalation, escape, evacuation and rescue analysis of safety and emergency systems. Separate chapters analyze the main hazards of offshore structures: fire, explosion, collision, and falling objects as well as structural and marine hazards. Risk mitigation and control are discussed, as well as an illustration of how the results from quantitative risk assessment studies should be presented. The third second edition has a stronger focus on the use of risk assessment techniques in the operation of offshore installations. Also decommissioning of installations is covered. Not only does Offshore Risk Assessment describe the state of the art of QRA, it also identifies weaknesses and areas that need further development. This new edition also illustrates applications or quantitative risk analysis methodology to offshore petroleum applications. A comprehensive reference for academics and students of marine/offshore risk assessment and management, the book should also be owned by professionals in the industry, contractors, suppliers, consultants and regulatory authorities.




Offshore Risk Assessment


Book Description

Offshore Risk Assessment is the first book to deal with quantified risk assessment (QRA) as applied specifically to offshore installations and operations. Risk assessment techniques have been used for some years in the offshore oil and gas industry, and their use is set to expand increasingly as the industry moves into new areas and faces new challenges in older regions. The book starts with a thorough discussion of risk analysis methodology. Subsequent chapters are devoted to analytical approaches to escalation, escape, evacuation and rescue analysis of safety and emergency systems. Separate chapters analyze the main hazards of offshore structures: Fire, explosion, collision and falling objects. Risk mitigation and control are then discussed, followed by an outline of an alternative approach to risk modelling that focuses especially on the risk of short-duration activities. Not only does the book describe the state of the art of QRA, it also identifies weaknesses and areas that need development. Readership: Besides being a comprehensive reference for academics and students of marine/offshore risk assessment and management, the book should also be owned by professionals in the industry, contractors, suppliers, consultants and regulatory authorities.




Offshore Risk Assessment Vol. 2


Book Description

This is the first textbook to address quantified risk assessment (QRA) as specifically applied to offshore installations and operations. As the second part of the two-volume updated and expanded fourth edition, it adds a new focus on the recent development of Normally Unattended Installations (NUIs), which are essentially autonomous installations that combine digitalization, big data, drones and machine learning, and can be supported by W2W (walk-to-work) vessels. These minimalistic installations with no helideck and very limited safety systems will require a new approach to risk assessment and emergency planning, especially during manned periods involving W2W vessels. Separate chapters analyse the main hazards for offshore structures: fire, explosion, collision, and falling objects, as well as structural and marine hazards. The book explores possible simplifications of risk assessment for traditional manned installations. Risk mitigation and control are also discussed, as well as how the results of quantitative risk assessment studies should be presented. In closing, the book provides an updated approach to environmental risk assessment. The book offers a comprehensive reference guide for academics and students of marine/offshore risk assessment and management. It will also be of interest to professionals in the industry, as well as contractors, suppliers, consultants and regulatory authorities.







Risk Management


Book Description

This book presents a risk management framework designed to achieve better decisions and more desirable outcomes. It presents an in-depth discussion of some fundamental principles of risk management related to the use of expected values, uncertainty handling, and risk acceptance criteria. Several examples from the offshore petroleum industry are included to illustrate the use of the framework, but it can also be applied in other areas.




Offshore Process Safety


Book Description

Methods in Chemical Process Safety, Volume Two, the latest release in a serial that publishes fully commissioned methods papers across the field of process safety, risk assessment, and management and loss prevention, aims to provide informative, visual and current content that appeals to both researchers and practitioners in process safety. This new release contains unique chapters on offshore safety, offshore platform safety, human factors in offshore operation, marine safety, safety during well drilling and operation, safety during processing (top side), safety during transportation of natural resources (offshore pipeline), and regulatory context Helps acquaint the reader/researcher with the fundamentals of process safety Provides the most recent advancements and contributions on the topic from a practical point-of-view Presents users with the views/opinions of experts in each topic Includes a selection of the author(s) of each chapter from among the leading researchers and/or practitioners for each given topic




Dynamic Risk Assessment and Management of Domino Effects and Cascading Events in the Process Industry


Book Description

Dynamic Risk Assessment and Management of Domino Effects and Cascading Events in the Process Industry provides insights into emerging and state-of-the-art methods for the dynamic assessment of risk and safety barrier performance in the framework of domino effect risk management. The book presents methods and tools to manage the risk of cascading events involving the chemical and process industry. It is an ideal reference for both safety and security managers, industrial risk stakeholders, scientists and practitioners. In addition, laymen may find the state-of-the-art methods concerning domino effects (large-scale accidents) and how to prevent their propagation an interesting topic of study. Includes dynamic hazard and risk assessment methods Presents methods for safety barrier performance assessment Addresses the effect of harsh environment on domino risk assessment Relates physical security in relation to domino effects Includes innovative methods and tools




Progress in Maritime Technology and Engineering


Book Description

Progress in Maritime Technology and Engineering collects the papers presented at the 4th International Conference on Maritime Technology and Engineering (MARTECH 2018, Lisbon, Portugal, 7–9 May 2018). This conference has evolved from a series of biannual national conferences in Portugal, and has developed into an international event, reflecting the internationalization of the maritime sector and its activities. MARTECH 2018 is the fourth in this new series of biannual conferences. Progress in Maritime Technology and Engineering contains about 80 contributions from authors from all parts of the world, which were reviewed by an International Scientific Committee. The book is divided into the subject areas below: - Port performance - Maritime transportation and economics - Big data in shipping - Intelligent ship navigation - Ship performance - Computational fluid dynamics - Resistance and propulsion - Ship propulsion - Dynamics and control - Marine pollution and sustainability - Ship design - Ship structures - Structures in composite materials - Shipyard technology - Coating and corrosion - Maintenance - Risk analysis - Offshore and subsea technology - Ship motion - Ships in transit - Wave-structure interaction - Wave and wind energy - Waves Progress in Maritime Technology and Engineering will be of interest to academics and professionals involved in the above mentioned areas.




Hybrid Energy Systems for Offshore Applications


Book Description

There has been a strong need to enhance the utilization of renewable energy systems (RESs) from onshore to offshore applications where oil and gas companies are pivoting to integrate such renewable energy options into their offshore operations to lower their carbon footprint, extend the lifetime of their assets, and expand their market. In this regard, innovative hybrid energy systems, such as “Power to Gas (P2G) and “Power to Liquid (P2L) options, as well as novel integration strategies for “Gas to Power (G2P) systems, offer the opportunity to implement solutions energy transition, paving the way to offshore RES deployment. Hybrid Energy Systems for Offshore Applications delivers a comprehensive presentation of state of the art and perspective developments of offshore RES exploitation strategies and technologies, and provides a unique portfolio of decision-making methodologies supporting the selection of the most suitable options for offshore renewable energy production at a specific site. System modeling and analysis along with the definitions of multicriteria methodologies and strategies based on sustainability, environmental impact, and safety performance indicators are addressed in an integrated fashion. Rounding out with both research and practical applications explained, this book gives academicians and industrial professionals fundamentals and methods for integrated performance analysis of innovative systems addressing offshore RES exploitation, sustainable chemical and power production, better efficiency, lower costs, lower environmental impact, and higher inherent safety. Harmonized presentation of RESs Unique coverage on hybrid energy systems and their offshore applications Comprehensive thermodynamic analysis and evaluation of the developed systems Process and system modeling, analysis, and decision-making methodologies for offshore P2G, P2L, and G2P solutions Sustainability modeling and assessment studies for various offshore applications Distinct parametric studies, illustrations, and case studies Specific sustainability and safety performance indicators for comparative evaluations




Risk Assessment and Management for Ships and Offshore Structures


Book Description

The volatile, uncertain, complex, and ambiguous (VUCA) nature of environmental and operational conditions is still the major cause of marine accidents, with knock-on effects in terms of casualties, property damage, and marine pollution. Recognized as the most effective approach to navigate VUCA environments, risk-based assessment methods provide a solution to address challenges associated with health, safety, and environmental protection in extreme conditions and when accidents involving engineering structures and infrastructure occur. This book serves as a comprehensive guide to the foundational principles, current practices, and cuttingedge trends in quantitative risk assessment and management for ships and offshore structures. With six parts encompassing a total of 35 chapters, it covers risk assessment and management for offshore installations, oil and gas leaks, collisions and grounding, and fires and explosions. Tailored for ship and offshore structural engineers, naval architects, as well as mechanical and civil engineers involved in advanced safety studies, this book is an invaluable resource for both practicing engineers and researchers in this field. • Offers insights into quantitative risk assessment and asset management for ships and offshore structures in extreme conditions and in the event of accidents • Equips engineers with valuable statistical data sets and enhances data assimilation techniques for precise hazard frequency calculations • Seamlessly integrates fundamental principles with practical applications, addressing emerging challenges and leveraging the latest technological advances in the field