Omics Technologies for Clinical Diagnosis and Gene Therapy: Medical Applications in Human Genetics


Book Description

Genetic disorders have been the focus of scientists for a long time. The emergence of next-generation sequencing techniques has ushered a new era in genetics and several developments have occurred in human genetics. The scientific perspective has also been widened with omics technologies that allow researchers to analyze genetic sequences and their expression products. An integrated approach is being used not only for diagnosis but also for disease management and therapeutic purposes. This book highlights emerging areas of omics technology and its application in the diagnosis and management of human genetic disorders. The book covers three areas of research and implementation: 1) Diagnosis (covering conventional strategies to next-generation platforms). This section focuses on the role of in silico analysis, databases and multi-omics of single-cell which will help in designing better management strategies. 2) Disease Management and therapeutic interventions. This section starts with genetic counselling and progresses to more specific techniques such as pharmacogenomics and personalized medicine, gene editing techniques and their applications in gene therapies and regenerative medicine. 3) Case studies. This section discusses the applications and success of all the above-mentioned strategies on selected human disorders. This book serves as a handy reference for students and academics studying advanced omics techniques in biochemistry and molecular genetics as part of courses in life sciences, pharmacology and medicine.




Omics Technologies for Clinical Diagnosis and Gene Therapy


Book Description

Genetic disorders have been the focus of scientists for a long time. The emergence of next-generation sequencing techniques has ushered a new era in genetics and several developments have occurred in human genetics. The scientific perspective has also been widened with omics technologies that allow researchers to analyze genetic sequences and their expression products. An integrated approach is being used not only for diagnosis but also for disease management and therapeutic purposes. This book highlights emerging areas of omics technology and its application in the diagnosis and management of human genetic disorders. The book covers three areas of research and implementation: 1) Diagnosis (covering conventional strategies to next-generation platforms). This section focuses on the role of in silico analysis, databases and multi-omics of single-cell which will help in designing better management strategies. 2) Disease Management and therapeutic interventions. This section starts with genetic counselling and progresses to more specific techniques such as pharmacogenomics and personalized medicine, gene editing techniques and their applications in gene therapies and regenerative medicine. 3) Case studies. This section discusses the applications and success of all the above-mentioned strategies on selected human disorders. This book serves as a handy reference for students and academics studying advanced omics techniques in biochemistry and molecular genetics as part of courses in life sciences, pharmacology and medicine.




Omics in Clinical Practice


Book Description

This title includes a number of Open Access chapters.This book serves as an introduction to genomics, proteomics, and transcriptomics, putting these fields in relation to human disease and ailments. The various chapters consider the role of translation and personalized medicine, as well as pathogen detection, evolution, and infection, in relation t




OMICS


Book Description

A reflection of the explosion of research and development in this field, OMICS: Biomedical Perspectives and Applications explores applications of omics in bioinformatics, cancer research and therapy, diabetes research, plant science, molecular biology, and neurosciences. A select editorial panel of experts discusses their cutting edge omics research and novel technologies, supplying a basic platform of methods and applications and a resource for enhanced cross-pollination in a multiomics approach to future endeavors in the fertile fields of omics research. After an introduction on the omics universe, the book presents modern omics and its applications in nanotechnology, genomics, proteomics, metagenomics, toxicogenomics, immunomics, nutrigenomics, diabetes, neurology, cardiology, and cancer to name just a few. The book begins with an overview of omics and omic technologies such as cellomics, glycomics, and lipidomics. It also discusses bioinformatics, demonstrating how it can be a tool in omics, and examines the various approaches of omics technology in toxicology research and applications in biomedical sciences. While there are a long list of omics books available, most focus narrowly on one area. Presenting a wide view of the current status of integrative omics, this resource contains complete coverage of omics in research and therapy, ranging from neuroscience to cardiology. It collates recent developments in the field into a state-of-the-art framework for this discipline.




Applications of Advanced Omics Technologies: From Genes to Metabolites


Book Description

The book contains contributions concerning the application of the new instrumental and methodological developments in omics technologies, including those related to Genomics, Transcriptomics, Proteomics, Peptidomics and Metabolomics, Lipidomics and Foodomics. The16 chapters discuss in detail: innovative applications of functional gene microarrays for profiling microbial communities, microRNA profiling, novel genotyping applications using microarray technology in cancer research, next-generation sequencing applied to the study of human microbiome, emerging RNA-SEQ applications in food science, recent progress in plant proteomics, applications of gel-free proteomic approaches, the challenges and applications of proteomics tools for food authenticity, the role of salivary peptidomics in clinical applications, metabolomic approaches to the study of degenerative, cardiovascular and renal diseases, and neonatal medicine. Also covered are other omics applications such as profiling of genetically modified organisms, the fundamentals, applications and challenges of foodomics, and MS-based lipidomics. Moreover, this volume includes relevant and updated aspects on bioinformatics, data treatment, data integration and systems biology. This book complements the previous volume "Fundamentals of Advanced Omics Technologies: New Advances from Genes to Metabolites" that covered the fundamental aspects of these new omics technologies. Describes the latest applications of omics technologies Provides an excellent reference for applications of advanced omics techniques Includes advanced tools and methodologies for dealing with the data generated




Evolution of Translational Omics


Book Description

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.




Single-Cell Omics


Book Description

Single-cell Omics, Volume 2: Advances in Applications provides the latest single-cell omics applications in the field of biomedicine. The advent of omics technologies have enabled us to identify the differences between cell types and subpopulations at the level of the genome, proteome, transcriptome, epigenome, and in several other fields of omics. The book is divided into two sections: the first is dedicated to biomedical applications, such as cell diagnostics, non-invasive prenatal testing (NIPT), circulating tumor cells, breast cancer, gliomas, nervous systems and autoimmune disorders, and more. The second focuses on cell omics in plants, discussing micro algal and single cell omics, and more. This book is a valuable source for bioinformaticians, molecular diagnostic researchers, clinicians and several members of biomedical field interested in understanding more about single-cell omics and its potential for research and diagnosis. Covers the diverse single cell omics applications in the biomedical field Summarizes the latest progress in single cell omics and discusses potential future developments for research and diagnosis Written by experts across the world, it brings different points-of-view and study cases to fully give a comprehensive overview of the topic




Omics Approaches in Breast Cancer


Book Description

Breast cancer is the most common cancer in females that accounts for highest cancer specific deaths worldwide. In the last few decades research has proven that breast cancer can be treated if diagnosed at early stages and proper therapeutic strategy is adopted. Omics-based recent approaches have unveiled the molecular mechanism behind the breast tumorigenesis and aid in identification of next-generation molecular markers for early diagnosis, prognosis and even the effective targeted therapy. Significant development has taken place in the field of omics in breast cancer in the last decade. The most promising omics approaches and their outcomes in breast cancer have been presented in this book for the first time. The book covers omics technologies and budding fields such as breast cancer miRNA, lipidomics, epigenomics, proteomics, nutrigenomics, stem cell, pharmacogenomics and personalized medicine and many more along with conventional topics such as breast cancer management etc. It is a research-based reference book useful for clinician-scientists, researchers, geneticists and health care industries involved in various aspects of breast cancer. The book will also be useful for students of biomedicine, pathology and pharmacy.




'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine


Book Description

This book concisely describes the role of omics in precision medicine for cancer therapies. It outlines our current understanding of cancer genomics, shares insights into the process of oncogenesis, and discusses emerging technologies and clinical applications of cancer genomics in prognosis and precision-medicine treatment strategies. It then elaborates on recent advances concerning transcriptomics and translational genomics in cancer diagnosis, clinical applications, and personalized medicine in oncology. Importantly, it also explains the importance of high-performance analytics, predictive modeling, and system biology in cancer research. Lastly, the book discusses current and potential future applications of pharmacogenomics in clinical cancer therapy and cancer drug development.




Curing Genetic Diseases Through Genome Reprogramming


Book Description

Curing Genetic Diseases through Genome Reprogramming, Volume 182 captures an historic moment in the field of gene therapy-the dawn of a new age in which the dream of curing genetic diseases has become realizable. The volume presents the most clinically advanced gene therapy and genome editing approaches for the treatment of genetic diseases in specific organs, including difficult therapeutic targets, futuristic ideas of genetic interventions, and large scale human genome repair. An initial chapter addresses the complex ethical aspects involved in the very idea of modifying the human genome. Provides a comprehensive view of gene therapy and genome editing technologies, including epigenetic editing Describes the state-of-the-art and future directions for the treatment of genetic diseases, also considering economical aspects Presents chapters that each give a thorough review of a specific disease, target organ or visionary approach, including ethical considerations