Symmetric Multivariate and Related Distributions


Book Description

Since the publication of the by now classical Johnson and Kotz Continuous Multivariate Distributions (Wiley, 1972) there have been substantial developments in multivariate distribution theory especially in the area of non-normal symmetric multivariate distributions. The book by Fang, Kotz and Ng summarizes these developments in a manner which is accessible to a reader with only limited background (advanced real-analysis calculus, linear algebra and elementary matrix calculus). Many of the results in this field are due to Kai-Tai Fang and his associates and appeared in Chinese publications only. A thorough literature search was conducted and the book represents the latest work - as of 1988 - in this rapidly developing field of multivariate distributions. The authors are experts in statistical distribution theory.




Probability Inequalities in Multivariate Distributions


Book Description

Probability Inequalities in Multivariate Distributions is a comprehensive treatment of probability inequalities in multivariate distributions, balancing the treatment between theory and applications. The book is concerned only with those inequalities that are of types T1-T5. The conditions for such inequalities range from very specific to very general. Comprised of eight chapters, this volume begins by presenting a classification of probability inequalities, followed by a discussion on inequalities for multivariate normal distribution as well as their dependence on correlation coefficients. The reader is then introduced to inequalities for other well-known distributions, including the multivariate distributions of t, chi-square, and F; inequalities for a class of symmetric unimodal distributions and for a certain class of random variables that are positively dependent by association or by mixture; and inequalities obtainable through the mathematical tool of majorization and weak majorization. The book also describes some distribution-free inequalities before concluding with an overview of their applications in simultaneous confidence regions, hypothesis testing, multiple decision problems, and reliability and life testing. This monograph is intended for mathematicians, statisticians, students, and those who are primarily interested in inequalities.




The Laplace Distribution and Generalizations


Book Description

This book describes the inferential and modeling advantages that this distribution, together with its generalizations and modifications, offers. The exposition systematically unfolds with many examples, tables, illustrations, and exercises. A comprehensive index and extensive bibliography also make this book an ideal text for a senior undergraduate and graduate seminar on statistical distributions, or for a short half-term academic course in statistics, applied probability, and finance.




Symmetric and Asymmetric Distributions


Book Description

In recent years, the advances and abilities of computer software have substantially increased the number of scientific publications that seek to introduce new probabilistic modelling frameworks, including continuous and discrete approaches, and univariate and multivariate models. Many of these theoretical and applied statistical works are related to distributions that try to break the symmetry of the normal distribution and other similar symmetric models, mainly using Azzalini's scheme. This strategy uses a symmetric distribution as a baseline case, then an extra parameter is added to the parent model to control the skewness of the new family of probability distributions. The most widespread and popular model is the one based on the normal distribution that produces the skewed normal distribution. In this Special Issue on symmetric and asymmetric distributions, works related to this topic are presented, as well as theoretical and applied proposals that have connections with and implications for this topic. Immediate applications of this line of work include different scenarios such as economics, environmental sciences, biometrics, engineering, health, etc. This Special Issue comprises nine works that follow this methodology derived using a simple process while retaining the rigor that the subject deserves. Readers of this Issue will surely find future lines of work that will enable them to achieve fruitful research results.




Copulae and Multivariate Probability Distributions in Finance


Book Description

Portfolio theory and much of asset pricing, as well as many empirical applications, depend on the use of multivariate probability distributions to describe asset returns. Traditionally, this has meant the multivariate normal (or Gaussian) distribution. More recently, theoretical and empirical work in financial economics has employed the multivariate Student (and other) distributions which are members of the elliptically symmetric class. There is also a growing body of work which is based on skew-elliptical distributions. These probability models all exhibit the property that the marginal distributions differ only by location and scale parameters or are restrictive in other respects. Very often, such models are not supported by the empirical evidence that the marginal distributions of asset returns can differ markedly. Copula theory is a branch of statistics which provides powerful methods to overcome these shortcomings. This book provides a synthesis of the latest research in the area of copulae as applied to finance and related subjects such as insurance. Multivariate non-Gaussian dependence is a fact of life for many problems in financial econometrics. This book describes the state of the art in tools required to deal with these observed features of financial data. This book was originally published as a special issue of the European Journal of Finance.




Continuous Multivariate Distributions, Volume 1


Book Description

Continuous Multivariate Distributions, Volume 1, Second Edition provides a remarkably comprehensive, self-contained resource for this critical statistical area. It covers all significant advances that have occurred in the field over the past quarter century in the theory, methodology, inferential procedures, computational and simulational aspects, and applications of continuous multivariate distributions. In-depth coverage includes MV systems of distributions, MV normal, MV exponential, MV extreme value, MV beta, MV gamma, MV logistic, MV Liouville, and MV Pareto distributions, as well as MV natural exponential families, which have grown immensely since the 1970s. Each distribution is presented in its own chapter along with descriptions of real-world applications gleaned from the current literature on continuous multivariate distributions and their applications.




Multivariate T-Distributions and Their Applications


Book Description

Almost all the results available in the literature on multivariate t-distributions published in the last 50 years are now collected together in this comprehensive reference. Because these distributions are becoming more prominent in many applications, this book is a must for any serious researcher or consultant working in multivariate analysis and statistical distributions. Much of this material has never before appeared in book form. The first part of the book emphasizes theoretical results of a probabilistic nature. In the second part of the book, these are supplemented by a variety of statistical aspects. Various generalizations and applications are dealt with in the final chapters. The material on estimation and regression models is of special value for practitioners in statistics and economics. A comprehensive bibliography of over 350 references is included.




A Modern Introduction to Probability and Statistics


Book Description

Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books




The Multivariate Normal Distribution


Book Description

The multivariate normal distribution has played a predominant role in the historical development of statistical theory, and has made its appearance in various areas of applications. Although many of the results concerning the multivariate normal distribution are classical, there are important new results which have been reported recently in the literature but cannot be found in most books on multivariate analysis. These results are often obtained by showing that the multivariate normal density function belongs to certain large families of density functions. Thus, useful properties of such families immedi ately hold for the multivariate normal distribution. This book attempts to provide a comprehensive and coherent treatment of the classical and new results related to the multivariate normal distribution. The material is organized in a unified modern approach, and the main themes are dependence, probability inequalities, and their roles in theory and applica tions. Some general properties of a multivariate normal density function are discussed, and results that follow from these properties are reviewed exten sively. The coverage is, to some extent, a matter of taste and is not intended to be exhaustive, thus more attention is focused on a systematic presentation of results rather than on a complete listing of them.




Riesz Probability Distributions


Book Description

This book is a useful overview of results in multivariate probability distributions and multivariate analysis as well as a reference to harmonic analysis on symmetric cones adapted to the needs of researchers in analysis and probability theory.