Statistical Methods of Discrimination and Classification


Book Description

Statistical Methods of Discrimination and Classification: Advances in Theory and Applications is a collection of papers that tackles the multivariate problems of discriminating and classifying subjects into exclusive population. The book presents 13 papers that cover that advancement in the statistical procedure of discriminating and classifying. The studies in the text primarily focus on various methods of discriminating and classifying variables, such as multiple discriminant analysis in the presence of mixed continuous and categorical data; choice of the smoothing parameter and efficiency of k-nearest neighbor classification; and assessing the performance of an allocation rule. The book will be of great use to researchers and practitioners of wide array of scientific disciplines, including engineering, psychology, biology, and physics.




Proceedings of the International Conference on Computing, Mathematics and Statistics (iCMS 2015)


Book Description

This proceedings volume consists of refereed papers presented at the Second International Conference on Computing, Mathematics and Statistics (iCMS 2015) held in Langkawi, Malaysia in November 2015. Divided into three sections - Computer Science, Mathematics and Statistics - the book includes both quantitative and qualitative research that confronts current societal issues. Within the main sections, the book also covers education based research works and the applications of computer and mathematical sciences in social science, business, industries and the life and hard sciences. Drawing on the theme Bridging Research Endeavor on Computing, Mathematics and Statistics, each of the conference papers are carefully selected and edited to cater to readers from diverse applied and social sciences backgrounds. The book allows for the contemplation and reflection on the possibility of the knowledge growth and knowledge sharing in building a better world for future generations.




Statistical Methods for Biostatistics and Related Fields


Book Description

This book covers a wide range of recent statistical methods that are of interest to scientists in biostatistics as well as in other related fields such as chemometrics, environmetrics and geophysics. The contributed papers, from internationally recognized researchers, present various statistical methodologies together with a selected scope of their main mathematical properties and their application in a real case study.




Statistical Inference Based on Divergence Measures


Book Description

The idea of using functionals of Information Theory, such as entropies or divergences, in statistical inference is not new. However, in spite of the fact that divergence statistics have become a very good alternative to the classical likelihood ratio test and the Pearson-type statistic in discrete models, many statisticians remain unaware of this p




Discriminant Analysis and Statistical Pattern Recognition


Book Description

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "For both applied and theoretical statisticians as well as investigators working in the many areas in which relevant use can be made of discriminant techniques, this monograph provides a modern, comprehensive, and systematic account of discriminant analysis, with the focus on the more recent advances in the field." –SciTech Book News ". . . a very useful source of information for any researcher working in discriminant analysis and pattern recognition." –Computational Statistics Discriminant Analysis and Statistical Pattern Recognition provides a systematic account of the subject. While the focus is on practical considerations, both theoretical and practical issues are explored. Among the advances covered are regularized discriminant analysis and bootstrap-based assessment of the performance of a sample-based discriminant rule, and extensions of discriminant analysis motivated by problems in statistical image analysis. The accompanying bibliography contains over 1,200 references.




Multivariate Observations


Book Description

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "In recent years many monographs have been published on specialized aspects of multivariate data-analysis–on cluster analysis, multidimensional scaling, correspondence analysis, developments of discriminant analysis, graphical methods, classification, and so on. This book is an attempt to review these newer methods together with the classical theory. . . . This one merits two cheers." –J. C. Gower, Department of Statistics Rothamsted Experimental Station, Harpenden, U.K. Review in Biometrics, June 1987 Multivariate Observations is a comprehensive sourcebook that treats data-oriented techniques as well as classical methods. Emphasis is on principles rather than mathematical detail, and coverage ranges from the practical problems of graphically representing high-dimensional data to the theoretical problems relating to matrices of random variables. Each chapter serves as a self-contained survey of a specific topic. The book includes many numerical examples and over 1,100 references.




Biometrics


Book Description

Emphasizes the role of statistics and mathematics in the biological sciences.




Principles of Multivariate Analysis


Book Description

This book is an introduction to the principles and methodology of modern multivariate statistical analysis. It is written for the user and potential user of multivariate techniques as well as for students coming to the subject for the first time. The author's emphasis is problem-orientated and he is at pains to stress geometrical intuition in preference to algebraic manipulation. Mathematical sections that are not essential for a practical understanding of the techniques are clearly indicated so that they may be skipped by the non-specialist. Discrete and mixed variable techniques are presented as well as continuous variable techniques to give a comprehensive coverage of the subject. This updated edition includes a new appendix which traces developments that have taken place in the years since the publication of the first edition and which clarifies some issues raised by readers of the original text. References to about 60 recent books and articles supplement the material in this appendix. Overall, this volume provides an up-to-date and readable practical account of the subject, both for students of statistics and for research workers in subjects as diverse as anthropology, education, industry, medicine and taxonomy. The new edition includes a survey of the most recent developments in the subject.




New Approaches in Classification and Data Analysis


Book Description

The subject of this book is the analysis and processing of structural or quantitative data with emphasis on classification methods, new algorithms as well as applications in various fields related to data analysis and classification. The book presents the state of the art in world-wide research and application of methods from the fields indicated above and consists of survey papers as well as research papers.




Methods of Multivariate Analysis


Book Description

Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Methods of Multivariate Analysis was among those chosen. When measuring several variables on a complex experimental unit, it is often necessary to analyze the variables simultaneously, rather than isolate them and consider them individually. Multivariate analysis enables researchers to explore the joint performance of such variables and to determine the effect of each variable in the presence of the others. The Second Edition of Alvin Rencher's Methods of Multivariate Analysis provides students of all statistical backgrounds with both the fundamental and more sophisticated skills necessary to master the discipline. To illustrate multivariate applications, the author provides examples and exercises based on fifty-nine real data sets from a wide variety of scientific fields. Rencher takes a "methods" approach to his subject, with an emphasis on how students and practitioners can employ multivariate analysis in real-life situations. The Second Edition contains revised and updated chapters from the critically acclaimed First Edition as well as brand-new chapters on: Cluster analysis Multidimensional scaling Correspondence analysis Biplots Each chapter contains exercises, with corresponding answers and hints in the appendix, providing students the opportunity to test and extend their understanding of the subject. Methods of Multivariate Analysis provides an authoritative reference for statistics students as well as for practicing scientists and clinicians.