On Lorentz-Zygmund Spaces


Book Description




Weighted Inequalities In Lorentz And Orlicz Spaces


Book Description

This book is intended as a survey of latest results on weighted inequalities in Lorentz, Orlicz spaces and Zygmund classes. During the last few years they have become one of the mostdeveloped offshoots of the theory of the harmonic analysis operators. Up to now there has been no monograph devoted to these questions, the results are mostly scattered in various journals and a part of the book consists of results not published anywhere else. Many of theorems presented have only previously been published in Russian.




Function Spaces


Book Description

The papers included in this volume deal with the following topics: convex analysis, operator theory, interpolation theory, theory of real functions, theory of analytic functions, bifurcation theory, Fourier analysis, functional analysis, measure theory, geometry of Banach spaces, history of mathematics.




Vector Measures, Integration and Related Topics


Book Description

This volume contains a selection of articles on the theme "vector measures, integration and applications" together with some related topics. The articles consist of both survey style and original research papers, are written by experts in thearea and present a succinct account of recent and up-to-date knowledge. The topic is interdisciplinary by nature and involves areas such as measure and integration (scalar, vector and operator-valued), classical and harmonic analysis, operator theory, non-commutative integration, andfunctional analysis. The material is of interest to experts, young researchers and postgraduate students.




Function Spaces, 1


Book Description

This is the first part of the second revised and extended edition of the well established book "Function Spaces" by Alois Kufner, Oldřich John, and Svatopluk Fučík. Like the first edition this monograph is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces in their research or lecture courses. This first volume is devoted to the study of function spaces, based on intrinsic properties of a function such as its size, continuity, smoothness, various forms of a control over the mean oscillation, and so on. The second volume will be dedicated to the study of function spaces of Sobolev type, in which the key notion is the weak derivative of a function of several variables.




Hardy Operators, Function Spaces and Embeddings


Book Description

Classical Sobolev spaces, based on Lebesgue spaces on an underlying domain with smooth boundary, are not only of considerable intrinsic interest but have for many years proved to be indispensible in the study of partial differential equations and variational problems. Many developments of the basic theory since its inception arise in response to concrete problems, for example, with the (ubiquitous) sets with fractal boundaries. The theory will probably enjoy substantial further growth, but even now a connected account of the mature parts of it makes a useful addition to the literature. Accordingly, the main themes of this book are Banach spaces and spaces of Sobolev type based on them; integral operators of Hardy type on intervals and on trees; and the distribution of the approximation numbers (singular numbers in the Hilbert space case) of embeddings of Sobolev spaces based on generalised ridged domains. This timely book will be of interest to all those concerned with the partial differential equations and their ramifications. A prerequisite for reading it is a good graduate course in real analysis.







Orlicz Spaces and Generalized Orlicz Spaces


Book Description

This book presents a systematic treatment of generalized Orlicz spaces (also known as Musielak–Orlicz spaces) with minimal assumptions on the generating Φ-function. It introduces and develops a technique centered on the use of equivalent Φ-functions. Results from classical functional analysis are presented in detail and new material is included on harmonic analysis. Extrapolation is used to prove, for example, the boundedness of Calderón–Zygmund operators. Finally, central results are provided for Sobolev spaces, including Poincaré and Sobolev–Poincaré inequalities in norm and modular forms. Primarily aimed at researchers and PhD students interested in Orlicz spaces or generalized Orlicz spaces, this book can be used as a basis for advanced graduate courses in analysis.




Linear Spaces and Approximation / Lineare Räume und Approximation


Book Description

The publication of Oberwolfach conference books was initiated by Birkhauser Publishers in 1964 with the proceedings of the conference 'On Approximation Theory', conducted by P. L. Butzer (Aachen) and J. Korevaar (Amsterdam). Since that auspicious beginning, others of the Oberwolfach proceedings have appeared in Birkhauser's ISNM series. The present volume is the fifth * edited at Aachen in collaboration with an external institution. It once again ad dresses itself to the most recent results on approximation and operator theory, and includes 47 of the 48 lectures presented at Oberwolfach, as well as five articles subsequently submitted by V. A. Baskakov (Moscow), H. Esser (Aachen), G. Lumer (Mons), E. L. Stark (Aachen) and P. M. Tamrazov (Kiev). In addition, there is a section devoted to new and unsolved problems, based upon two special problem sessions augmented by later communications from the participants. Corresponding to the nature of the conference, the aim of the organizers was to solicit both specialized and survey papers, ranging in the broad area of classical and functional analysis, from approximation and interpolation theory to Fourier and harmonic analysis, and to the theory of function spaces and operators. The papers were supplemented by lectures on fields represented for the first time in our series of Oberwolfach Conferences, so for example, complex function theory or probability and sampling theory.