On Maps from Loop Suspensions to Loop Spaces and the Shuffle Relations on the Cohen Groups


Book Description

The maps from loop suspensions to loop spaces are investigated using group representations in this article. The shuffle relations on the Cohen groups are given. By using these relations, a universal ring for functorial self maps of double loop spaces of double suspensions is given. Moreover the obstructions to the classical exponent problem in homotopy theory are displayed in the extension groups of the dual of the important symmetric group modules Lie$(n)$, as well as in the top cohomology of the Artin braid groups with coefficients in the top homology of the Artin pure braid groups.




Twisted Tensor Products Related to the Cohomology of the Classifying Spaces of Loop Groups


Book Description

Let $G$ be a compact, simply connected, simple Lie group. By applying the notion of a twisted tensor product in the senses of Brown as well as of Hess, we construct an economical injective resolution to compute, as an algebra, the cotorsion product which is the $E_2$-term of the cobar type Eilenberg-Moore spectral sequence converging to the cohomology of classifying space of the loop group $LG$. As an application, the cohomology $H^*(BLSpin(10); \mathbb{Z}/2)$ is explicitly determined as an $H^*(BSpin(10); \mathbb{Z}/2)$-module by using effectively the cobar type spectral sequence and the Hochschild spectral sequence, and further, by analyzing the TV-model for $BSpin(10)$.




Stability of Spherically Symmetric Wave Maps


Book Description

Presents a study of Wave Maps from ${\mathbf{R}}^{2+1}$ to the hyperbolic plane ${\mathbf{H}}^{2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H^{1+\mu}$, $\mu>0$.




Operator Valued Hardy Spaces


Book Description

The author gives a systematic study of the Hardy spaces of functions with values in the noncommutative $Lp$-spaces associated with a semifinite von Neumann algebra $\mathcal{M .$ This is motivated by matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), as well as by the recent development of noncommutative martingale inequalities. in this paper noncommutative Hardy spaces are defined by noncommutative Lusin integral function, and it isproved that they are equivalent to those defined by noncommutative Littlewood-Paley G-functions. The main results of this paper include: (i) The analogue in the author's setting of the classical Fefferman duality theorem between $\mathcal{H 1$ and $\mathrm{BMO $. (ii) The atomic decomposition of theauthor's noncommutative $\mathcal{H 1.$ (iii) The equivalence between the norms of the noncommutative Hardy spaces and of the noncommutative $Lp$-spaces $(1




An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation


Book Description

The authors define axiomatically a large class of function (or distribution) spaces on $N$-dimensional Euclidean space. The crucial property postulated is the validity of a vector-valued maximal inequality of Fefferman-Stein type. The scales of Besov spaces ($B$-spaces) and Lizorkin-Triebel spaces ($F$-spaces), and as a consequence also Sobolev spaces, and Bessel potential spaces, are included as special cases. The main results of Chapter 1 characterize our spaces by means of local approximations, higher differences, and atomic representations. In Chapters 2 and 3 these results are applied to prove pointwise differentiability outside exceptional sets of zero capacity, an approximation property known as spectral synthesis, a generalization of Whitney's ideal theorem, and approximation theorems of Luzin (Lusin) type.




Equivalences of Classifying Spaces Completed at the Prime Two


Book Description

We prove here the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion. This is a consequence of a technical algebraic result, which says that for a finite group $G$, the second higher derived functor of the inverse limit vanishes for a certain functor $\mathcal{Z}_G$ on the $2$-subgroup orbit category of $G$. The proof of this result uses the classification theorem for finite simple groups.




Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls


Book Description

Contents: A tree structure for the unit ball $mathbb B? n$ in $mathbb C'n$; Carleson measures; Pointwise multipliers; Interpolating sequences; An almost invariant holomorphic derivative; Besov spaces on trees; Holomorphic Besov spaces on Bergman trees; Completing the multiplier interpolation loop; Appendix; Bibliography




Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points


Book Description

Considers indecomposable degree $n$ covers of Riemann surfaces with monodromy group an alternating or symmetric group of degree $d$. The authors show that if the cover has five or more branch points then the genus grows rapidly with $n$ unless either $d = n$ or the curves have genus zero, there are precisely five branch points and $n =d(d-1)/2$.




The Structure of the Rational Concordance Group of Knots


Book Description

The author studies the group of rational concordance classes of codimension two knots in rational homology spheres. He gives a full calculation of its algebraic theory by developing a complete set of new invariants. For computation, he relates these invariants with limiting behaviour of the Artin reciprocity over an infinite tower of number fields and analyzes it using tools from algebraic number theory. In higher dimensions it classifies the rational concordance group of knots whose ambient space satisfies a certain cobordism theoretic condition. In particular, he constructs infinitely many torsion elements. He shows that the structure of the rational concordance group is much more complicated than the integral concordance group from a topological viewpoint. He also investigates the structure peculiar to knots in rational homology 3-spheres. To obtain further nontrivial obstructions in this dimension, he develops a technique of controlling a certain limit of the von Neumann $L 2$-signature invariants.