Physical Adsorption


Book Description

A comprehensive account of the phenomena that occur when simple gases interact with surfaces, this text takes a fundamental perspective. Physical adsorption involves atomic or molecular films bound to surfaces by less than 0.5 eV per particle. Physically absorbed thin films exhibit remarkably diverse properties and behave in a manner characteristic of two-dimensional matter. This exploration focuses on monolayer physics, emphasizing atomic rather than molecular adsorption. The phase diagrams of physically absorbed films are diverse and rich in structure because of the subtle and varied competition between the two interactions: the mutual interaction between adsorbed molecules, and the force binding each molecule to the surface. The authors explain the microscopic origin of these forces in terms of constituent electrons and nuclei. They then examine the structural and dynamical properties of these films in the context of atomic and solid-state physics, statistical mechanics, and computer simulations. This text will be of interest to research chemists, physicists, and engineers alike, as well as students in these fields. Key literature citations allow readers to trace important developments, and thought-provoking problems are addressed in detail.




Physical Adsorption


Book Description

The study of physical adsorption has economic and technical value, while continuing to present scientific challenges. During recent years three significant trends have become manifest: significant theoretical advances; instrumental developments allowing detailed characterization of materials, including microporous solids; and the realization that closer coupling of scientific and technological lines of enquiry can lead to both greater scientific understanding and better technology.




On Physical Adsorption


Book Description




Principles of Adsorption and Reaction on Solid Surfaces


Book Description

Principles of Adsorption and Reaction on Solid Surfaces As with other books in the field, Principles of Adsorption and Reaction on Solid Surfaces describes what occurs when gases come in contact with various solid surfaces. But, unlike all the others, it also explains why. While the theory of surface reactions is still under active development, the approach Dr. Richard Masel takes in this book is to outline general principles derived from thermodynamics and reaction rate theory that can be applied to reactions on surfaces, and to indicate ways in which these principles may be applied. The book also provides a comprehensive treatment of the latest quantitative surface modeling techniques with numerous examples of their use in the fields of chemical engineering, physical chemistry, and materials science. A valuable working resource and an excellent graduate-level text, Principles of Adsorption and Reaction on Solid Surfaces provides readers with: * A detailed look at the latest advances in understanding and quantifying reactions on surfaces * In-depth reviews of all crucial background material * 40 solved examples illustrating how the methods apply to catalysis, physical vapor deposition, chemical vapor deposition, electrochemistry, and more * 340 problems and practice exercises * Sample computer programs * Universal plots of many key quantities * Detailed, class-tested derivations to help clarify key results The recent development of quantitative techniques for modeling surface reactions has led to a number of exciting breakthroughs in our understanding of what happens when gases come in contact with solid surfaces. While many books have appeared describing various experimental modeling techniques and the results obtained through their application, until now, there has been no single-volume reference devoted to the fundamental principles governing the processes observed. The first book to focus on governing principles rather than experimental techniques or specific results, Principles of Adsorption and Reaction on Solid Surfaces provides students and professionals with a quantitative treatment of the application of principles derived from the fields of thermodynamics and reaction rate theory to the investigation of gas adsorption and reaction on solid surfaces. Writing for a broad-based audience including, among others, chemical engineers, chemists, and materials scientists, Dr. Richard I. Masel deftly balances basic background in areas such as statistical mechanics and kinetics with more advanced applications in specialized areas. Principles of Adsorption and Reaction on Solid Surfaces was also designed to provide readers an opportunity to quickly familiarize themselves with all of the important quantitative surface modeling techniques now in use. To that end, the author has included all of the key equations involved as well as numerous real-world illustrations and solved examples that help to illustrate how the equations can be applied. He has also provided computer programs along with universal plots that make it easy for readers to apply results to their own problems with little computational effort. Principles of Adsorption and Reaction on Solid Surfaces is a valuable working resource for chemical engineers, physical chemists, and materials scientists, and an excellent text for graduate students in those disciplines.




Adsorption by Powders and Porous Solids


Book Description

The declared objective of this book is to provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance. The primary aim is to meet the needs of students and non-specialists who are new to surface science or who wish to use the advanced techniques now available for the determination of surface area, pore size and surface characterization. In addition, a critical account is given of recent work on the adsorptive properties of activated carbons, oxides, clays and zeolites. Provides a comprehensive treatment of adsorption at both the gas/solid interface and the liquid/solid interface Includes chapters dealing with experimental methodology and the interpretation of adsorption data obtained with porous oxides, carbons and zeolites Techniques capture the importance of heterogeneous catalysis, chemical engineering and the production of pigments, cements, agrochemicals, and pharmaceuticals




Adsorption from Solutions of Non-Electrolytes


Book Description

Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption at the liquid-solid interface, adsorption from completely miscible and partially liquids, adsorption of gases and solids from solution, adsorption of polymers, and adsorption in multicomponent systems. Subsequent chapters deal with factors influencing competitive adsorption at the liquid-solid interface. adsorption at the liquid-vapor and liquid-liquid interface, kinetics and thermodynamics of adsorption from the liquid phase, the use of columns in adsorption, and use of adsorption from solution to measure surface area.




Bleaching and Purifying Fats and Oils


Book Description

Since the original publication of this book in 1992, the bleaching process has continued to attract the attention of researchers and the edible-oil industry. In this 2nd edition, the reader is directed to more modern techniques of analysis such as flame-atomic adsorption, graphite furnace atomic adsorption, and atomic emission spectrometry involving direct current plasma (DCP) and inductively coupled plasma (ICP). It also discusses the Freundlich Equation and reports on high-temperature water extraction, high- temperature oxidative aqueous regeneration, and extraction with supercritical CO2. Finally, various degumming methods improved over the past several decades are discussed Second edition features the progress in the bleaching and purifying of fats and oils since the mid-1990s Includes extensive details on the adsorptive purification of an oil prior to subsequent steps in the process, including refining and deodorization Offers practical considerations for choosing membranes, filtration equipment, and other key economic consideratons







Adsorption Technology and Design


Book Description

The aim of this book is to provide all those involved in designing and running adsorption processes with a guide to adsorption technology and design.