The Solid-Liquid Interface


Book Description

This 1973 book aims to describe the basic physical changes of the solid-liquid interface.




Applied Mechanics of Solids


Book Description

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o




Dislocations in Solids


Book Description

Dislocations are lines of irregularity in the structure of a solid analogous to the bumps in a badly laid carpet. Like these bumps, they can be easily moved, and they provide the most important mechanism by which the solid can be deformed. They also have a strong influence on crystal growth and on the electronic properties of semiconductors.




An Introduction to Transport Phenomena in Materials Engineering


Book Description

This book elucidates the important role of conduction, convection, and radiation heat transfer, mass transport in solids and fluids, and internal and external fluid flow in the behavior of materials processes. These phenomena are critical in materials engineering because of the connection of transport to the evolution and distribution of microstructural properties during processing. From making choices in the derivation of fundamental conservation equations, to using scaling (order-of-magnitude) analysis showing relationships among different phenomena, to giving examples of how to represent real systems by simple models, the book takes the reader through the fundamentals of transport phenomena applied to materials processing. Fully updated, this third edition of a classic textbook offers a significant shift from the previous editions in the approach to this subject, representing an evolution incorporating the original ideas and extending them to a more comprehensive approach to the topic. FEATURES Introduces order-of-magnitude (scaling) analysis and uses it to quickly obtain approximate solutions for complicated problems throughout the book Focuses on building models to solve practical problems Adds new sections on non-Newtonian flows, turbulence, and measurement of heat transfer coefficients Offers expanded sections on thermal resistance networks, transient heat transfer, two-phase diffusion mass transfer, and flow in porous media Features more homework problems, mostly on the analysis of practical problems, and new examples from a much broader range of materials classes and processes, including metals, ceramics, polymers, and electronic materials Includes homework problems for the review of the mathematics required for a course based on this book and connects the theory represented by mathematics with real-world problems This book is aimed at advanced engineering undergraduates and students early in their graduate studies, as well as practicing engineers interested in understanding the behavior of heat and mass transfer and fluid flow during materials processing. While it is designed primarily for materials engineering education, it is a good reference for practicing materials engineers looking for insight into phenomena controlling their processes. A solutions manual, lecture slides, and figure slides are available for qualifying adopting professors.




Thermal Conductivity 26


Book Description

Major edited presentations of new developments in materials science and technology.







Mechanical Behavior of Engineering Materials


Book Description

This monograph consists of two volumes and provides a unified, comprehensive presentation of the important topics pertaining to the understanding and determination of the mechanical behaviour of engineering materials under different regimes of loading. The large subject area is separated into eighteen chapters and four appendices, all self-contained, which give a complete picture and allow a thorough understanding of the current status and future direction of individual topics. Volume I contains eight chapters and three appendices, and concerns itself with the basic concepts pertaining to the entire monograph, together with the response behaviour of engineering materials under static and quasi-static loading. Thus, Volume I is dedicated to the introduction, the basic concepts and principles of the mechanical response of engineering materials, together with the relevant analysis of elastic, elastic-plastic, and viscoelastic behaviour. Volume II consists of ten chapters and one appendix, and concerns itself with the mechanical behaviour of various classes of materials under dynamic loading, together with the effects of local and microstructural phenomena on the response behaviour of the material. Volume II also contains selected topics concerning intelligent material systems, and pattern recognition and classification methodology for the characterization of material response states. The monograph contains a large number of illustrations, numerical examples and solved problems. The majority of chapters also contain a large number of review problems to challenge the reader. The monograph can be used as a textbook in science and engineering, for third and fourth undergraduate levels, as well as for the graduate levels. It is also a definitive reference work for scientists and engineers involved in the production, processing and applications of engineering materials, as well as for other professionals who are involved in the engineering design process.




High-Pressure Shock Compression of Solids IV


Book Description

While much is known about the effects of shock compression on monolithic materials, the unusual physical and chemical processes that take place when a porous medium is shocked have hardly been studied until now. Here, leading researchers in condensed matter physics, physical chemistry, metallurgy, mechanics, and materials science bridge this gap. The focus is on heterogeneous deformation mechanisms, nonequilibrium thermodynamics, and chemical processes, covering such topics as modelling the complex interplay of thermal, mechanical, and chemical processes; experimental data on pore collapse and their interpretation; and synthesis of new materials through shock-induced chemical reactions. By presenting not only the most recent results, but also the open questions that remain, these essays convey the excitement of developing a scientific basis for understanding shock compression.