Henri Poincaré


Book Description

A comprehensive look at the mathematics, physics, and philosophy of Henri Poincaré Henri Poincaré (1854–1912) was not just one of the most inventive, versatile, and productive mathematicians of all time—he was also a leading physicist who almost won a Nobel Prize for physics and a prominent philosopher of science whose fresh and surprising essays are still in print a century later. The first in-depth and comprehensive look at his many accomplishments, Henri Poincaré explores all the fields that Poincaré touched, the debates sparked by his original investigations, and how his discoveries still contribute to society today. Math historian Jeremy Gray shows that Poincaré's influence was wide-ranging and permanent. His novel interpretation of non-Euclidean geometry challenged contemporary ideas about space, stirred heated discussion, and led to flourishing research. His work in topology began the modern study of the subject, recently highlighted by the successful resolution of the famous Poincaré conjecture. And Poincaré's reformulation of celestial mechanics and discovery of chaotic motion started the modern theory of dynamical systems. In physics, his insights on the Lorentz group preceded Einstein's, and he was the first to indicate that space and time might be fundamentally atomic. Poincaré the public intellectual did not shy away from scientific controversy, and he defended mathematics against the attacks of logicians such as Bertrand Russell, opposed the views of Catholic apologists, and served as an expert witness in probability for the notorious Dreyfus case that polarized France. Richly informed by letters and documents, Henri Poincaré demonstrates how one man's work revolutionized math, science, and the greater world.




Henri Poincare: A Biography Through The Daily Papers


Book Description

On July 17, 2012, the centenary of Henri Poincaré's death was commemorated; his name being associated with so many fields of knowledge that he was considered as the Last Universalist. In Pure and Applied Mathematics, Physics, Astronomy, Engineering and Philosophy, his works have had a great impact all over the world. Poincaré acquired in his lifetime such a reputation that, both nationally and internationally, his life and career were made the object of various articles in the daily papers not only in France, but also in the USA. Some of his philosophical concepts have even caused sharp controversies in the Press (as we will discover in this book).This work presents an original portrait of Henri Poincaré based on various press cuttings from The New York Times, The San Francisco Sunday Call, The Times, The Sun, The Washington Post that chronicled unknown anecdotes of his life (for example, his first name was actually not Henri, but Henry; he obtained his high school diploma in sciences with a zero in mathematics, etc.). Such an approach enables the discovering of many forgotten or unknown aspects of his scientific and philosophical works as well as his important role in the public sphere.




Science and Hypothesis


Book Description




Einstein's Clocks and Poincare's Maps: Empires of Time


Book Description

"In Galison's telling of science, the meters and wires and epoxy and solder come alive as characters, along with physicists, engineers, technicians and others . . . Galison has unearthed fascinating material." ("New York Times").




Last Thoughts


Book Description

Henri Poincaré is a mathematician, physicist, philosopher and engineer, born April 29, 1854 in Nancy and died July 17, 1912 in Paris. He has carried out works of major importance in optics and in infinitesimal calculus. His advances on the problem of the three bodies make him a founder of the qualitative study of systems of differential equations and chaos theory; he is also a major precursor of the theory of special relativity and the theory of dynamical systems. Henri Poincaré is considered one of the last great universal scholars, mastering all branches of mathematics of his time and some branches of physics. This book gathers here various articles and lectures that Henri Poincaré himself intended to form the fourth volume of his works of philosophy of science. All the previous ones had already appeared in this collection. It would be useless to recall their prodigious success. The most illustrious of modern mathematicians has been an eminent philosopher, one of those whose books profoundly influence human thought. It is probable that if Henri Poincaré himself had published this volume, he would have modified certain details, removed some repetitions. But it seemed to us that the respect due to the memory of this great death forbade any editing of his text.




The Poincare Conjecture


Book Description

Henri Poincaré was one of the greatest mathematicians of the late nineteenth and early twentieth century. He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincaré conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point. Poincaré's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award. In telling the vibrant story of The Poincaré Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.




The Three-Body Problem and the Equations of Dynamics


Book Description

Here is an accurate and readable translation of a seminal article by Henri Poincaré that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincaré applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations’ solutions, such as orbital resonances and horseshoe orbits. Poincaré wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating.




Einstein, Picasso


Book Description

The most important scientist of the twentieth century and the most important artist had their periods of greatest creativity almost simultaneously and in remarkably similar circumstances. This fascinating parallel biography of Albert Einstein and Pablo Picasso as young men examines their greatest creations -- Picasso's Les Demoiselles d'Avignon and Einstein's special theory of relativity. Miller shows how these breakthroughs arose not only from within their respective fields but from larger currents in the intellectual culture of the times. Ultimately, Miller shows how Einstein and Picasso, in a deep and important sense, were both working on the same problem.




The Value of Science


Book Description

The Value of ScienceLa Valeur de la ScienceHenri Poincar�The Value of Science (French: La Valeur de la Science) is a book by the French mathematician, physicist, and philosopher Henri Poincar�. It was published in 1905. The book deals with questions in the philosophy of science and adds detail to the topics addressed by Poincar�'s previous book, Science and Hypothesis (1902).The search for truth should be the goal of our activities; it is the sole end worthy of them. Doubtless we should first bend our efforts to assuage human suffering, but why? Not to suffer is a negative ideal more surely attained by the annihilation of the world. If we wish more and more to free man from material cares, it is that he may be able to employ the liberty obtained in the study and contemplation of truth.But sometimes truth frightens us. And in fact we know that it is sometimes deceptive, that it is a phantom never showing itself for a moment except to ceaselessly flee, that it must be pursued further and ever further without ever being attained. Yet to work one must stop, as some Greek, Aristotle or another, has said. We also know how cruel the truth often is, and we wonder whether illusion is not more consoling, yea, even more bracing, for illusion it is which gives confidence. When it shall have vanished, will hope remain and shall we have the courage to achieve? Thus would not the horse harnessed to his treadmill refuse to go, were his eyes not bandaged? And then to seek truth it is necessary to be independent, wholly independent. If, on the contrary, we wish to act, to be strong, we should be united. This is why many of us fear truth; we consider it a cause of weakness. Yet truth should not be feared, for it alone is beautiful.




The Scientific Legacy of Poincare


Book Description

Henri Poincare (1854-1912) was one of the greatest scientists of his time, perhaps the last one to have mastered and expanded almost all areas in mathematics and theoretical physics. In this book, twenty world experts present one part of Poincare's extraordinary work. Each chapter treats one theme, presenting Poincare's approach, and achievements.