Modeling and Simulation of Reactive Flows


Book Description

Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and various techniques—including flamelet, ILDM, and Redim—for jet flames and plumes, with solutions for both. In addition, the book includes techniques to accelerate the convergence of numerical simulation, and a discussion on the analysis of uncertainties with numerical results, making this a useful reference for anyone who is interested in both combustion in free flow and in porous media. - Helps readers learn how to apply applications of numerical methods to simulate geochemical kinetics - Presents methods on how to transform the transport equations in several coordinate systems - Includes discussions of the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms, including the most common methods used in practical situations - Offers a distinctive approach that combines diffusion flames and geochemical flow problems




Introduction to Modeling and Control of Internal Combustion Engine Systems


Book Description

Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.




Modeling of Combustion Systems


Book Description

Increasing competitive pressure for improved quality and efficiency on one hand and tightening emissions and operating requirements on the other leave the modern process engineer squeezed in the middle. While effective modeling can help balance these demands, the current literature offers overly theoretical treatments on modeling that do not transl




1D and Multi-D Modeling Techniques for IC Engine Simulation


Book Description

1D and Multi-D Modeling Techniques for IC Engine Simulation provides a description of the most significant and recent achievements in the field of 1D engine simulation models and coupled 1D-3D modeling techniques, including 0D combustion models, quasi-3D methods and some 3D model applications.




Modeling and Simulation of Turbulent Combustion


Book Description

This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.




Combustion


Book Description

This book provides a rigorous treatment of the coupling of chemical reactions and fluid flow. Combustion-specific topics of chemistry and fluid mechanics are considered and tools described for the simulation of combustion processes. This edition is completely restructured. Mathematical Formulae and derivations as well as the space-consuming reaction mechanisms have been replaced from the text to appendix. A new chapter discusses the impact of combustion processes on the atmosphere, the chapter on auto-ignition is extended to combustion in Otto- and Diesel-engines, and the chapters on heterogeneous combustion and on soot formation are heavily revised.




Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion


Book Description

Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45, gives an overview of the different steps involved in the development and application of detailed kinetic mechanisms, mainly relating to pyrolysis and combustion processes. The book is divided into two parts that cover the chemistry and kinetic models and then the numerical and statistical methods. It offers a comprehensive coverage of the theory and tools needed, along with the steps necessary for practical and industrial applications.







Solid Fuels Combustion and Gasification


Book Description

Bridging the gap between theory and application, this reference demonstrates the operational mechanisms, modeling, and simulation of equipment for the combustion and gasification of solid fuels. Solid Fuels Combustion and Gasification: Modeling, Simulation, and Equipment Operation clearly illustrates procedures to improve and optimize the de




Emissions Reduction


Book Description

Over the past decade the topic of emissions reduction and control has remained an important area of research due to the enforcement of various Government policies in an attempt to minimize the impact on the environment. One area in which a great deal of research has been conducted to address this policy is NOx/SOx suppression. However, despite the progress that has been made over this time period, further research into the most effective method of reducing NOx/SOx emissions is still urgently required. In developed countries, a more stringent requirement in the level of emissions (such as is NOx/SOx component of less than 10ppm) will be enforced in the near future. Developing countries will also need a new technology that is effective and that is suited to each countries needs. Additional research and development efforts are thus necessary to meet such requirements. This compendium contains a collection of key papers themed around NOx/SOx emissions from combustion of hydrocarbon resources and the attempts to secure an efficient and effective method for reducing these emissions. These key papers are taken from the journals Fuel, Fuel Processing Technology and Progress in Energy and Combustion Science.