On the Evolution of Phase Boundaries


Book Description

This IMA Volume in Mathematics and its Applications ON THE EVOLUTION OF PHASE BOUNDARIES is based on the proceedings of a workshop which was an integral part of the 1990- 91 IMA program on "Phase Transitions and Free Boundaries". The purpose of the workshop was to bring together mathematicians and other scientists working on the Stefan problem and related theories for modeling physical phenomena that occurs in two phase systems. We thank M.E. Gurtin and G. McFadden for editing the proceedings. We also take this opportunity to thank the National Science Foundation, whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE A primary goal of the IMA workshop on the Evolution of Phase Boundaries from September 17-21, 1990 was to emphasize the interdisciplinary nature of contempo rary research in this field, research which combines ideas from nonlinear partial dif ferential equations, asymptotic analysis, numerical computation, and experimental science. The workshop brought together researchers from several disciplines, includ ing mathematics, physics, and both experimental and theoretical materials science.




Evolution of Phase Transitions


Book Description

This 2006 work began with the author's exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium are relinquished. The finite deformation theory of elasticity turns out to be a natural vehicle for the study of phase transitions in solids where thermal effects can be neglected. This text will be of interest to those interested in the development and application of continuum-mechanical models that describe the macroscopic response of materials capable of undergoing stress- or temperature-induced transitions between two solid phases. The focus is on the evolution of phase transitions which may be either dynamic or quasi-static, controlled by a kinetic relation which in the framework of classical thermomechanics represents information that is supplementary to the usual balance principles and constitutive laws of conventional theory.







Phase Evolution Diagrams


Book Description

This book introduces a novel concept of Phase Evolution Diagrams (PED) for determining the residual life of industrial components. PED is based on the simple themodynamic considerations of precipitation proccess and depict the time-dependence of the concentration of carbon (the fingerprint of thermal history of a component) as a function of time in ferritic steels.







Methods for Phase Diagram Determination


Book Description

Phase diagrams are "maps" materials scientists often use to design new materials. They define what compounds and solutions are formed and their respective compositions and amounts when several elements are mixed together under a certain temperature and pressure. This monograph is the most comprehensive reference book on experimental methods for phase diagram determination. It covers a wide range of methods that have been used to determine phase diagrams of metals, ceramics, slags, and hydrides.* Extensive discussion on methodologies of experimental measurements and data assessments * Written by experts around the world, covering both traditional and combinatorial methodologies* A must-read for experimental measurements of phase diagrams




Recrystallization and Related Annealing Phenomena


Book Description

The annealing of deformed materials is of both technological importance and scientific interest. The phenomena have been most widely studied in metals, although they occur in all crystalline materials such as the natural deformation of rocks and the processing of technical ceramics. Research is mainly driven by the requirements of industry, and where appropriate, the book discusses the extent to which we are able to formulate quantitative, physically-based models which can be applied to metal-forming processes.The subjects treated in this book are all active research areas, and form a major part of at least four regular international conference series. However, there have only been two monographs published in recent times on the subject of recrystallization, the latest nearly 20 years ago. Since that time, considerable advances have been made, both in our understanding of the subject and in the techniques available to the researcher.The book covers recovery, recrystallization and grain growth in depth including specific chapters on ordered materials, two-phase alloys, annealing textures and annealing during and after hot working. Also contained are treatments of the deformed state and the structure and mobility of grain boundaries, technologically important examples and a chapter on computer simulation and modelling. The book provides a scientific treatment of the subject for researchers or students in Materials Science, Metallurgy and related disciplines, who require a more detailed coverage than is found in textbooks on physical metallurgy, and a more coherent treatment than will be found in the many conference proceedings and review articles.




Boundaries of Evolution


Book Description

Boundaries of Evolution describes the unlikelihood of evolutionary theory to explain how it is supposed to scale three major biological cliffs. The first cliff is the need for a logical explanation of how random chemical reactions could produce the first living cell from the primordial soup. The second is the problem of explaining how the first single-celled eukaryote evolved from a prokaryote. Mathematical improbabilities of evolutionary theory to scale the first two cliffs, in the time available, are demonstrated. The third insurmountable cliff is the necessity for a reasonable explanation of how millions of different kinds of multi-celled eukaryotes could have quickly evolved from single-celled eukaryotes. Random mutations occurring in DNA, accepted or rejected by natural selection, are hailed as the source of advancement for the increase in biotic complexity. The most common time for mutations to occur in the DNA is during replication. Therefore, evolutionary advancement should occur faster in biota with the most frequent replication cycles. If both evolutionary theory and the fossil record are correct, prokaryotes, which replicate in as little as 20 minutes took 2 billion years to evolve the first single-celled eukaryote. Single-celled eukaryotes, generally having shorter reproductive times than multi-celled eukaryotes, took another billion years to evolve the first multi-celled eukaryote. Then during Cambrian times, the multi-celled eukaryotes with the longest reproductive cycles literally exploded in diversity in a comparatively short time. How could this be? Other inadequacies of Darwin's theory are presented for everyone to see.