Handbook of Experimental Structural Dynamics


Book Description

The SEM Handbook of Experimental Structural Dynamics stands as a comprehensive overview and reference for its subject, applicable to workers in research, product design and manufacture, and practice. The Handbook is devoted primarily to the areas of structural mechanics served by the Society for Experimental Mechanics IMAC community, such as modal analysis, rotating machinery, structural health monitoring, shock and vibration, sensors and instrumentation, aeroelasticity, ground testing, finite element techniques, model updating, sensitivity analysis, verification and validation, experimental dynamics sub-structuring, quantification of margin and uncertainty, and testing of civil infrastructure. Chapters offer comprehensive, detailed coverage of decades of scientific and technologic advance and all demonstrate an experimental perspective. Several sections specifically discuss the various types of experimental testing and common practices utilized in the automotive, aerospace, and civil structures industries. · History of Experimental Structural Mechanics · DIC Methods - Dynamic Photogrammetry · LDV Methods · Applied Digital Signal Processing · Introduction to Spectral - Basic Measurements · Structural Measurements - FRF · Random and Shock Testing · Rotating System Analysis Methods · Sensors Signal Conditioning Instrumentation · Design of Modal Tests · Experimental Modal Methods · Experimental Modal Parameter Evaluation · Operating Modal Analysis Methods · Analytical Numerical Substructuring · Finite Element Model Correlation · Model Updating · Damping of Materials and Structures · Model Calibration and Validation in Structures · Uncertainty Quantification: UQ, QMU and Statistics · Nonlinear System Analysis Methods (Experimental) · Structural Health Monitoring and Damage Detection · Experimental Substructure Modeling · Modal Modeling · Response (Impedance) Modeling · Nonlinear Normal Mode Analysis Techniques (Analytical) · Modal Modeling with Nonlinear Connection Elements (Analytical) · Acoustics of Structural Systems (VibroAcoustics) · Automotive Structural Testing · Civil Structural Testing · Aerospace Perspective for Modeling and Validation · Sports Equipment Testing · Applied Math for Experimental Structural Mechanics Contributions present important theory behind relevant experimental methods as well as application and technology. Topical authors emphasize and dissect proven methods and offer detail beyond a simple review of the literature. Additionally, chapters cover practical needs of scientists and engineers who are new to the field. In most cases, neither the pertinent theory nor, in particular, the practical issues have been presented formally in current academic textbooks. Each chapter in the Handbook represents a ’must read’ for someone new to the subject or for someone returning to the field after an absence. Reference lists in each chapter consist of the seminal papers in the literature. This Handbook stands in parallel to the SEM Handbook of Experimental Solid Mechanics, where this Handbook focuses on experimental dynamics of structures at a macro-scale often involving multiple components and materials where the SEM Handbook of Experimental Solid Mechanics focuses on experimental mechanics of materials at a nano-scale and/or micro-scale.










Proceedings


Book Description







Inter-noise 93


Book Description







Experimental Methods in Catalytic Research


Book Description

Experimental Methods in Catalytic Research, Volume I provides a useful account of procedures in various areas of catalytic research. This book describes the method and its fundamental principles, the apparatus used, the data obtained and their interpretation, and the account of the special problems related to catalytic research. Organized into 11 chapters, this volume begins with an overview of the kinetic phenomena such as quantitative studies of reaction rate and factors influencing rate. This text then examines the general properties that are of major importance to catalysis since catalytic rates depend mainly on available active surface. Other chapters consider the detailed mechanism of any catalytic reaction, which include the electronic structure of the chemisorption bond. This book discusses as well several experimental methods developed to study surface reactions under highly idealized conditions. The final chapter deals with the phenomenon associated with the spin of an electron. This book is a valuable resource for chemical engineers.




Experimental Techniques In Physics And Materials Sciences: Principles And Methodologies


Book Description

There have been new developments in experimental techniques for preparing and characterizing materials and for measuring their properties. These techniques are not being taught to students at the master's or even doctoral levels because there is no single book which deals with all these techniques at a basic level. The present book is an attempt to overcome this problem.The book is divided into five sections: (1) Techniques for preparing materials in the bulk, nanoscale and thin film forms; (2) Techniques for characterizing materials like X ray and neutron powder diffraction, ESCA, Ellipsometry for thin films, Ultrasonic techniques, Electron microscopy, Surface probe techniques and Positron annihilation for defect studies; (3) Techniques for measurements, at research level, of the elastic, thermal, electrical, dielectric and magnetic properties; (4) Spectroscopic techniques such as NMR-EPR spectroscopy, IR, Visible-UV spectroscopy and Mossbauer spectroscopy and (5) Phase transitions. In each of the above topics the basic principles are clearly laid out, the experimental set-ups are described, and typical examples are cited to illustrate the physics revealed by these techniques.The book can be used for a two-semester course on experimental techniques in physics and materials science at the master's and pre-doctoral degree levels for students.