Approximation of Set-valued Functions


Book Description

This book is aimed at the approximation of set-valued functions with compact sets in an Euclidean space as values. The interest in set-valued functions is rather new. Such functions arise in various modern areas such as control theory, dynamical systems and optimization. The authors' motivation also comes from the newer field of geometric modeling, in particular from the problem of reconstruction of 3D objects from 2D cross-sections. This is reflected in the focus of this book, which is the approximation of set-valued functions with general (not necessarily convex) sets as values, while previous results on this topic are mainly confined to the convex case. The approach taken in this book is to adapt classical approximation operators and to provide error estimates in terms of the regularity properties of the approximated set-valued functions. Specialized results are given for functions with 1D sets as values.




Approximation Of Set-valued Functions: Adaptation Of Classical Approximation Operators


Book Description

This book is aimed at the approximation of set-valued functions with compact sets in an Euclidean space as values. The interest in set-valued functions is rather new. Such functions arise in various modern areas such as control theory, dynamical systems and optimization. The authors' motivation also comes from the newer field of geometric modeling, in particular from the problem of reconstruction of 3D objects from 2D cross-sections. This is reflected in the focus of this book, which is the approximation of set-valued functions with general (not necessarily convex) sets as values, while previous results on this topic are mainly confined to the convex case. The approach taken in this book is to adapt classical approximation operators and to provide error estimates in terms of the regularity properties of the approximated set-valued functions. Specialized results are given for functions with 1D sets as values.




Topological Methods For Set-valued Nonlinear Analysis


Book Description

This book provides a comprehensive overview of the authors' pioneering contributions to nonlinear set-valued analysis by topological methods. The coverage includes fixed point theory, degree theory, the KKM principle, variational inequality theory, the Nash equilibrium point in mathematical economics, the Pareto optimum in optimization, and applications to best approximation theory, partial equations and boundary value problems.Self-contained and unified in presentation, the book considers the existence of equilibrium points of abstract economics in topological vector spaces from the viewpoint of Ky Fan minimax inequalities. It also provides the latest developments in KKM theory and degree theory for nonlinear set-valued mappings.




Approximation and Optimization of Discrete and Differential Inclusions


Book Description

Optimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions. In addition to including well-recognized results of variational analysis and optimization, the book includes a number of new and important ones Includes practical examples




Set Optimization and Applications - The State of the Art


Book Description

This volume presents five surveys with extensive bibliographies and six original contributions on set optimization and its applications in mathematical finance and game theory. The topics range from more conventional approaches that look for minimal/maximal elements with respect to vector orders or set relations, to the new complete-lattice approach that comprises a coherent solution concept for set optimization problems, along with existence results, duality theorems, optimality conditions, variational inequalities and theoretical foundations for algorithms. Modern approaches to scalarization methods can be found as well as a fundamental contribution to conditional analysis. The theory is tailor-made for financial applications, in particular risk evaluation and [super-]hedging for market models with transaction costs, but it also provides a refreshing new perspective on vector optimization. There is no comparable volume on the market, making the book an invaluable resource for researchers working in vector optimization and multi-criteria decision-making, mathematical finance and economics as well as [set-valued] variational analysis.




Optimization and Control with Applications


Book Description

A collection of 28 refereed papers grouped according to four broad topics: duality and optimality conditions, optimization algorithms, optimal control, and variational inequality and equilibrium problems. Suitable for researchers, practitioners and postgrads.




Variational Analysis


Book Description

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.




Optimization—Theory and Applications


Book Description

This book has grown out of lectures and courses in calculus of variations and optimization taught for many years at the University of Michigan to graduate students at various stages of their careers, and always to a mixed audience of students in mathematics and engineering. It attempts to present a balanced view of the subject, giving some emphasis to its connections with the classical theory and to a number of those problems of economics and engineering which have motivated so many of the present developments, as well as presenting aspects of the current theory, particularly value theory and existence theorems. However, the presentation ofthe theory is connected to and accompanied by many concrete problems of optimization, classical and modern, some more technical and some less so, some discussed in detail and some only sketched or proposed as exercises. No single part of the subject (such as the existence theorems, or the more traditional approach based on necessary conditions and on sufficient conditions, or the more recent one based on value function theory) can give a sufficient representation of the whole subject. This holds particularly for the existence theorems, some of which have been conceived to apply to certain large classes of problems of optimization. For all these reasons it is essential to present many examples (Chapters 3 and 6) before the existence theorems (Chapters 9 and 11-16), and to investigate these examples by means of the usual necessary conditions, sufficient conditions, and value function theory.




Set-Valued Analysis


Book Description

"An elegantly written, introductory overview of the field, with a near perfect choice of what to include and what not, enlivened in places by historical tidbits and made eminently readable throughout by crisp language. It has succeeded in doing the near-impossible—it has made a subject which is generally inhospitable to nonspecialists because of its ‘family jargon’ appear nonintimidating even to a beginning graduate student." —The Journal of the Indian Institute of Science "The book under review gives a comprehensive treatment of basically everything in mathematics that can be named multivalued/set-valued analysis. ...The book is highly recommended for mathematicians and graduate students who will find here a very comprehensive treatment of set-valued analysis." —Mathematical Reviews "This book provides a thorough introduction to multivalued or set-valued analysis... The style is lively and vigorous, the relevant historical comments and suggestive overviews increase the interest for this work...Graduate students and mathematicians of every persuasion will welcome this unparalleled guide to set-valued analysis." —Zentralblatt Math




Stochastic and Differential Games


Book Description

The theory of two-person, zero-sum differential games started at the be­ ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton­ Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe­ sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv­ ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po­ sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.