Survivability and Traffic Grooming in WDM Optical Networks


Book Description

The advent of fiber optic transmission systems and wavelength division multiplexing (WDM) have led to a dramatic increase in the usable bandwidth of single fiber systems. This book provides detailed coverage of survivability (dealing with the risk of losing large volumes of traffic data due to a failure of a node or a single fiber span) and traffic grooming (managing the increased complexity of smaller user requests over high capacity data pipes), both of which are key issues in modern optical networks. A framework is developed to deal with these problems in wide-area networks, where the topology used to service various high-bandwidth (but still small in relation to the capacity of the fiber) systems evolves toward making use of a general mesh. Effective solutions, exploiting complex optimization techniques, and heuristic methods are presented to keep network problems tractable. Newer networking technologies and efficient design methodologies are also described.










Optical WDM Networks


Book Description

Research and development on optical wavelength-division multiplexing (WDM) networks have matured considerably. While optics and electronics should be used appropriately for transmission and switching hardware, note that "intelligence'' in any network comes from "software,'' for network control, management, signaling, traffic engineering, network planning, etc.The role of software in creating powerful network architectures for optical WDM networks is emphasized. Optical WDM Networks is a textbook for graduate level courses. Its focus is on the networking aspects of optical networking, but it also includes coverage of physical layers in optical networks. The author introduces WDM and its enabling technologies and discusses WDM local, access, metro, and long-haul network architectures. Each chapter is self-contained, has problems at the end of each chapter, and the material is organized for self study as well as classroom use. The material is the most recent and timely in capturing the state-of-the-art in the fast-moving field of optical WDM networking.




Traffic Grooming in Optical WDM Mesh Networks


Book Description

Optical networks based on wavelength-division multiplexing (WDM) tech nology offer the promise to satisfy the bandwidth requirements of the Inter net infrastructure, and provide a scalable solution to support the bandwidth needs of future applications in the local and wide areas. In a waveleng- routed network, an optical channel, referred to as a lightpath, is set up between two network nodes for communication. Using WDM technology, an optical fiber link can support multiple non-overlapping wavelength channels, each of which can be operated at the data rate of 10 Gbps or 40 Gbps today. On the other hand, only a fraction of customers are expected to have a need for such a high bandwidth. Due to the large cost of the optical backbone infrastruc ture and enormous WDM channel capacity, connection requests with diverse low-speed bandwidth requirements need to be efficiently groomed onto hi- capacity wavelength channels. This book investigates the optimized design, provisioning, and performance analysis of traffic-groomable WDM networks, and proposes and evaluates new WDM network architectures. Organization of the Book Significant amount of research effort has been devoted to traffic grooming in SONET/WDM ring networks since the current telecom networks are mainly deployed in the form of ring topologies or interconnected rings. As the long-haul backbone networks are evolving to irregular mesh topologies, traffic grooming in optical WDM mesh networks becomes an extremely important and practical research topic for both industry and academia.




WDM Optical Networks


Book Description

This helpful guide provides practicing engineers, students, and researchers with a systematic, up-to-date introduction to the fundamental concepts, challenges, and state-of-the-art developments in WDM optical networks. The authors rely extensively on real-world examples and draw on the latest research to cover optical network design and provisioning in far greater depth than any other book.




Optical WDM Networks


Book Description

Research and development on optical wavelength-division multiplexing (WDM) networks have matured considerably. While optics and electronics should be used appropriately for transmission and switching hardware, note that "intelligence'' in any network comes from "software,'' for network control, management, signaling, traffic engineering, network planning, etc.The role of software in creating powerful network architectures for optical WDM networks is emphasized. Optical WDM Networks is a textbook for graduate level courses. Its focus is on the networking aspects of optical networking, but it also includes coverage of physical layers in optical networks. The author introduces WDM and its enabling technologies and discusses WDM local, access, metro, and long-haul network architectures. Each chapter is self-contained, has problems at the end of each chapter, and the material is organized for self study as well as classroom use. The material is the most recent and timely in capturing the state-of-the-art in the fast-moving field of optical WDM networking.




Towards Scalable Cost-Effective Service and Survivability Provisioning in Ultra High Speed Networks


Book Description

Optical transport networks based on wavelength division multiplexing (WDM) are considered to be the most appropriate choice for future Internet backbone. On the other hand, future DOE networks are expected to have the ability to dynamically provision on-demand survivable services to suit the needs of various high performance scientific applications and remote collaboration. Since a failure in aWDMnetwork such as a cable cut may result in a tremendous amount of data loss, efficient protection of data transport in WDM networks is therefore essential. As the backbone network is moving towards GMPLS/WDM optical networks, the unique requirement to support DOE's science mission results in challenging issues that are not directly addressed by existing networking techniques and methodologies. The objectives of this project were to develop cost effective protection and restoration mechanisms based on dedicated path, shared path, preconfigured cycle (p-cycle), and so on, to deal with single failure, dual failure, and shared risk link group (SRLG) failure, under different traffic and resource requirement models; to devise efficient service provisioning algorithms that deal with application specific network resource requirements for both unicast and multicast; to study various aspects of traffic grooming in WDM ring and mesh networks to derive cost effective solutions while meeting application resource and QoS requirements; to design various diverse routing and multi-constrained routing algorithms, considering different traffic models and failure models, for protection and restoration, as well as for service provisioning; to propose and study new optical burst switched architectures and mechanisms for effectively supporting dynamic services; and to integrate research with graduate and undergraduate education. All objectives have been successfully met. This report summarizes the major accomplishments of this project. The impact of the project manifests in many aspects: First, the project addressed many essential problems that arisen in current and future WDM optical networks, and provided a host of innovative solutions though there was no invention or patent filing. This project resulted in more than 2 dozens publications in major journals and conferences (including papers in IEEE Transactions and journals, as well as a book chapter). Our publications have been cited by many peer researchers. In particular, one of our conference papers was nominated for the best paper award of IEEE/Create-Net Broadnets (International Conference on Broadband Communications, Networks, and Systems) 2006. Second, the results and solutions of this project were well received by DOE Labs where presentations were given by the PI. We hope to continue the collaboration with DOE Labs in the future. Third, the project was the first to propose and extensively study multicast traffic grooming, new traffic models such as sliding scheduled traffic model and scheduled traffic model. Our research has sparkled a flurry of recent studies and publications by the research community in these areas. Fourth, the project has benefited a diverse population of students by motivating, engaging, enhancing their learning and skills. The project has been conducted in a manner conducive to the training of students both at graduate and undergraduate levels. As a result, one Ph. D., Dr. Abdur Billah, was graduated. Another Ph. D. student, Tianjian Li, will graduate in January 2007. In addition, four MS students were graduated. One undergraduate student, Jeffrey Alan Shininger, completed his university honors project. Fifth, thanks to the support of this ECPI project, the PI has obtained additional funding from the National Science Foundation, the Air Force Research Lab, and other sources. A few other proposals are pending. Finally, this project has also significantly impacted the curricula and resulted in the enhancement of courses at the graduate and undergraduate levels, therefore strengthening the bond between research and education.




Traffic Grooming for Optical Networks


Book Description

This book presents the practical motivation, theoretical description, and extant techniques for traffic grooming in optical networks. The description of the various topics of research will be authored by leading researchers in this area, and will contain comprehensive description of related literature for each area. This book is intended to be a definitive reference and text for traffic grooming both for the practitioner in industry and the student in academia.




Survivable Design and Analysis of WDM Mesh Networks


Book Description

In this thesis, we are particularly interested in studying the impact of network element failure(s) on network survivability. Namely, we propose and analyze a series of models and schemes to protect and restore the affected services in the networks, thus achieve a better survivability in optical networks. In additions to an introduction of optical networks and a survey of the related work, this thesis first focuses on the problem of fast recovery in Chapter 3. By using the framework of Offset-Time restoration, a novel model based on time-driven scheduling is proposed. It substantially shortens the restoration time and can be applied in both single-link failure and dual-link failure scenarios. Next, capacity reprovisioning, as a simple and efficient mechanism to protect a network against multiple failures, is investigated and a new reprovisioning scheme is proposed in Chapter 4. Finally, the application of capacity reprovisioning in traffic grooming is considered. Two frameworks, i.e., lightpath level reprovisioning and connection level reprovisioning, are proposed in Chapter 5 to improve the survivability of optical networks with grooming capability.