On unit groups of modular group algebras


Book Description

In this book we analyse unit groups of group algebras KG for non-abelian p-groups G and fields K of characteristic p. By calculating the core and the normaliser of U in 1 + rad(KG) – the group of normalized units -- for every subgroup U of G, we generalise results of K.R. Pearson and D.B. Coleman using fixed points of enhanced group actions. Our concept of so-called end-commutable ordering leads to a new method of studying the center of 1 + rad(KG). We proof that a finite group G is nilpotent if and only if every conjugacy class possesses an end-commutable ordering. As a simple consequence we get a result of A.A. Bovdi and Z. Patay, which shows how the exponent of the center of 1 + rad(KG) can be determined by calculations purely within the group G. We describe the groups for which this exponent is extremal and calculate the exponent for various group classes (e.g. regular groups, special groups, Sylow subgroups of linear and symmetric groups) and group constructions (e.g. wreath products, central products, special group extensions, isoclinic groups). Another application of our concept of end-commutable ordering is a description of the invariants of the center of 1 + rad(KG) for a finite field K. They are determined purely by the group G and the field K and can be visualized by a special graph – the class-graph. As a consequence of our results we prove that the center, the derived subgroups and the p-th-power subgroup of 1 + rad(KG) are not cyclic. Furthermore, we obtain some properties of unit groups of group algebras for extra-special 2-groups and fields of characteristic 2. Finally, we investigate the behaviour of the center and other characteristics (e.g. the exponent, the class of nilpotency, the Baer length, the degree of commutativity) for the chain of iterated unit groups of modular group algebras. For this, we use Lie and radical algebra methods.




Group Identities on Units and Symmetric Units of Group Rings


Book Description

Let FG be the group ring of a group G over a field F. Write U(FG) for the group of units of FG. It is an important problem to determine the conditions under which U(FG) satisfies a group identity. In the mid 1990s, a conjecture of Hartley was verified, namely, if U(FG) satisfies a group identity, and G is torsion, then FG satisfies a polynomial identity. Necessary and sufficient conditions for U(FG) to satisfy a group identity soon followed. Since the late 1990s, many papers have been devoted to the study of the symmetric units; that is, those units u satisfying u* = u, where * is the involution on FG defined by sending each element of G to its inverse. The conditions under which these symmetric units satisfy a group identity have now been determined. This book presents these results for arbitrary group identities, as well as the conditions under which the unit group or the set of symmetric units satisfies several particular group identities of interest.




Groups St Andrews 2009 in Bath: Volume 2


Book Description

This second volume of a two-volume book contains selected papers from the international conference Groups St Andrews 2009. Leading researchers in their respective areas, including Eammon O'Brien, Mark Sapir and Dan Segal, survey the latest developments in algebra.




Groups, Rings and Algebras


Book Description

This is a companion volume to the conference in honor of Donald S. Passman held in Madison, Wisconsin in June 2005. It contains research papers on Algebras, Group Rings, Hopf Algebras, Invariant Theory, Lie Algebras and their Enveloping Algebras, Noncommutative Algebraic Geometry, Noncommutative Rings, and other topics. The papers represent an important part of the latest research in these areas.




Algebra


Book Description

The Indian National. Science Academy has planned to bring out monographs on special topics with the aim of providing acce~sible surveys/reviews of topics of current research in various fields. Prof. S.K. Malik, FNA, Editor of Publications INSA asked me in October 1997 to edit a volume on algebra in this series. I invited a number of algebraists, several of them working in group rings, and it is with great satisfaction and sincere thanks to the authors that I present here in Algebra: Some Recent Advances the sixteen contributions received in response to my invitations. I.B.S. Passi On Abelian Difference Sets K. r Arasu* and Surinder K. Sehgal 1. Introduction We review some existence and nonexistence results - new and old - on abelian difference sets. Recent surveys on difference sets can be found in Arasu (1990), Jungnickel (1992a, b), Pott (1995), Jungnickel and Schmidt (1997), and Davis and Jedwab (1996). Standard references for difference sets are Baumert (1971), Beth et al. (1998), and Lander (1983). This article presents a flavour of the subject, by discussing some selected topics. Difference sets are very important in combinatorial design theory and in commu nication engineering while designing sequences with good correlation properties. Our extended bibliography covers a wide variety of papers written in the area of difference sets and related topics.




Groups '93 Galway [and] St. Andrews


Book Description

This two-volume book contains selected papers from the international conference 'Groups 1993 Galway / St Andrews' which was held at University College Galway in August 1993. The wealth and diversity of group theory is represented in these two volumes. As with the Proceedings of the earlier 'Groups-St Andrews' conferences it is hoped that the articles in these Proceedings will, with their many references, prove valuable both to experienced researchers and also to new postgraduates interested in group theory.







Handbook of Algebra


Book Description

Handbook of Algebra




Groups, Rings, Group Rings, and Hopf Algebras


Book Description

This volume contains the proceedings of the International Conference on Groups, Rings, Group Rings, and Hopf Algebras, held October 2–4, 2015 at Loyola University, Chicago, IL, and the AMS Special Session on Groups, Rings, Group Rings, and Hopf Algebras, held October 3–4, 2015, at Loyola University, Chicago, IL. Both conferences were held in honor of Donald S. Passman's 75th Birthday. Centered in the area of group rings and algebras, this volume contains a mixture of cutting edge research topics in group theory, ring theory, algebras and their representations, Hopf algebras and quantum groups.




Infinite Groups And Group Rings - Proceedings Of The Ams Special Session


Book Description

This proceedings volume consists of contributed papers which deal with diverse topics ranging from logical questions to geometric methods and covering both integral group rings and group algebras. Some papers are research announcements, or of a descriptive nature, while others are research papers.