Theory of Adaptive Structures


Book Description

Theory of Adaptive Structures provides the basic theory for controlling adaptive structures in static and dynamic environments. It synthesizes well-established theories on modern control as well as statics and dynamics of deformable bodies. Discussions concentrate on the discrete parameter adaptive structures dealing with actuator placement, actuator selection, and actuation computation problems - keeping these structures at close proximity of any chosen nominal state with the least energy consumption. An introduction to the distributed parameter adaptive structures is also provided. The book follows that modern trend in research and industry striving to incorporate intelligence into engineered products through microprocessors that are becoming smaller, faster, and cheaper at astounding rates. Not using them in engineered products may become an enormous liability. Resulting from the advances in materials technology on sensors and actuator technologies as well as the availability of very powerful and reliable microprocessors, there is an ever-increasing interest in actively controlling the behavior of engineering systems. Engineers and engineering scientists must revive and broaden their activities to maximize applications for predicting and controlling the behavior of deformable bodies. Topics include: An introduction to adaptive structures Incremental excitation-response relations in static and dynamic cases Active control of response in static case Statically determinate adaptive structures Statically indeterminate adaptive structures Active vibration control for autonomous and non-autonomous cases Active control against wind Active control against seismic loads Distributed parameter adaptive structures The technology of adaptive structures has created an environment where the analysis, not the computation, of structural response - du




Vibration Control and Actuation of Large-Scale Systems


Book Description

Vibration Control and Actuation of Large-Scale Systems gives a systematically and self-contained description of the many facets of envisaging, designing, implementing, or experimentally exploring advanced vibration control systems. The book is devoted to the development of mathematical methodologies for vibration analysis and control problems of large-scale systems, including structural dynamics, vehicle dynamics and wind turbines, for example. The research problems addressed in each chapter are well motivated, with numerical and simulation results given in each chapter that reflect best engineering practice. - Provides a series of the latest results in vibration control, structural control, actuation, component failures, and more - Gives numerical and simulation results to reflect best engineering practice - Presents recent advances of theory, technological aspects, and applications of advanced control methodologies in vibration control




Passive and Active Structural Vibration Control in Civil Engineering


Book Description

Base isolation, passive energy dissipation and active control represent three innovative technologies for protection of structures under environmental loads. Increasingly, they are being applied to the design of new structures or to the retrofit of existing structures against wind, earthquakes and other external loads. This book, with contributions from leading researchers from Japan, Europe, and the United States, presents a balanced view of current research and world-wide development in this exciting and fast expanding field. Basic principles as well as practical design and implementational issues associated with the application of base isolation systems and passive and active control devices to civil engineering structures are carefully addressed. Examples of structural applications are presented and extensively discussed.




Computational Mechanics


Book Description




Masters Theses in the Pure and Applied Sciences


Book Description

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this jOint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 40 (thesis year 1995) a total of 10,746 thesis titles from 19 Canadian and 144 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 40 reports theses submitted in 1995, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.




Proceedings of the 6th International Symposium on Uncertainty Quantification and Stochastic Modelling


Book Description

This proceedings book covers a wide range of topics related to uncertainty analysis and its application in various fields of engineering and science. It explores uncertainties in numerical simulations for soil liquefaction potential, the toughness properties of construction materials, experimental tests on cyclic liquefaction potential, and the estimation of geotechnical engineering properties for aerogenerator foundation design. Additionally, the book delves into uncertainties in concrete compressive strength, bio-inspired shape optimization using isogeometric analysis, stochastic damping in rotordynamics, and the hygro-thermal properties of raw earth building materials. It also addresses dynamic analysis with uncertainties in structural parameters, reliability-based design optimization of steel frames, and calibration methods for models with dependent parameters. The book further explores mechanical property characterization in 3D printing, stochastic analysis in computational simulations, probability distribution in branching processes, data assimilation in ocean circulation modeling, uncertainty quantification in climate prediction, and applications of uncertainty quantification in decision problems and disaster management. This comprehensive collection provides insights into the challenges and solutions related to uncertainty in various scientific and engineering contexts.







Proceedings of the 10th International Conference on Electrorheological Fluids and Magnetorheological Suspensions


Book Description

ERMR 2006 included invited speakers, technical presentations, poster presentations, and a student paper competition. At the conference banquet, Dr. David Carlson of Lord Corporation addressed the conference attendees and gave a stirring speech on the history of ER and MR fluids, as well as current and future applications. A unique feature of the ERMR Conferences is that they comprehensively cover issues ranging from physics to chemistry to engineering applications of ER and MR materials held in a general session to enhance the interaction between the scientists and engineers. The sessions in ERMR 2006 were organized based into two Symposia: a) Materials and b) Applications. Topics covered in the Materials Symposium included: mechanisms, preparation, and characterization of ER and MR materials. Topics covered in the Applications Symposium included: ER and MR devices, control systems, system integration, and applications. This structure was implemented in order to enable interaction between attending scientists and engineers in both the Materials Symposium and the Applications Symposium, and to enhance the free flow of ideas, and the potential collaborative research opportunities.




Experimental Vibration Analysis for Civil Structures


Book Description

This edited volume presents selected contributions from the International Conference on Experimental Vibration Analysis of Civil Engineering Structures held in San Diego, California in 2017 (EVACES2017). The event brought together engineers, scientists, researchers, and practitioners, providing a forum for discussing and disseminating the latest developments and achievements in all major aspects of dynamic testing for civil engineering structures, including instrumentation, sources of excitation, data analysis, system identification, monitoring and condition assessment, in-situ and laboratory experiments, codes and standards, and vibration mitigation.




Earthquake Engineer 10th World


Book Description