OpenSHMEM and Related Technologies. Big Compute and Big Data Convergence


Book Description

This book constitutes the proceedings of the 4th OpenSHMEM Workshop, held in Annapolis, MD, USA, in August 2017.The 11 full papers presented in this book were carefully reviewed and selected from 14 submissions. The papers discuss a variety of ideas for extending the OpenSHMEM specification and making it efficient for current and next generation systems. This includes new research for communication contexts in OpenSHMEM, different optimizations for OpenSHMEM on shared memory machines, exploring the implementation of OpenSHMEM and its memory model on Intel’s KNL architecture, and implementing new applications and benchmarks with OpenSHMEM.




High Performance Computing


Book Description

This book constitutes the refereed proceedings of the 35th International Conference on High Performance Computing, ISC High Performance 2020, held in Frankfurt/Main, Germany, in June 2020.* The 27 revised full papers presented were carefully reviewed and selected from 87 submissions. The papers cover a broad range of topics such as architectures, networks & infrastructure; artificial intelligence and machine learning; data, storage & visualization; emerging technologies; HPC algorithms; HPC applications; performance modeling & measurement; programming models & systems software. *The conference was held virtually due to the COVID-19 pandemic. Chapters "Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) Streaming-Aggregation Hardware Design and Evaluation", "Solving Acoustic Boundary Integral Equations Using High Performance Tile Low-Rank LU Factorization", "Scaling Genomics Data Processing with Memory-Driven Computing to Accelerate Computational Biology", "Footprint-Aware Power Capping for Hybrid Memory Based Systems", and "Pattern-Aware Staging for Hybrid Memory Systems" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI


Book Description

This book constitutes the revised selected papers of the 17th Smoky Mountains Computational Sciences and Engineering Conference, SMC 2020, held in Oak Ridge, TN, USA*, in August 2020. The 36 full papers and 1 short paper presented were carefully reviewed and selected from a total of 94 submissions. The papers are organized in topical sections of computational applications: converged HPC and artificial intelligence; system software: data infrastructure and life cycle; experimental/observational applications: use cases that drive requirements for AI and HPC convergence; deploying computation: on the road to a converged ecosystem; scientific data challenges. *The conference was held virtually due to the COVID-19 pandemic.




Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation


Book Description

This book constitutes the revised selected papers of the 21st Smoky Mountains Computational Sciences and Engineering Conference, SMC 2021, held in Oak Ridge, TN, USA*, in October 2021. The 33 full papers and 3 short papers presented were carefully reviewed and selected from a total of 88 submissions. The papers are organized in topical sections of computational applications: converged HPC and artificial intelligence; advanced computing applications: use cases that combine multiple aspects of data and modeling; advanced computing systems and software: connecting instruments from edge to supercomputers; deploying advanced computing platforms: on the road to a converged ecosystem; scientific data challenges. *The conference was held virtually due to the COVID-19 pandemic.




Advances in Computer Science and Ubiquitous Computing


Book Description

This book presents the combined proceedings of the 7th International Conference on Computer Science and its Applications (CSA-15) and the International Conference on Ubiquitous Information Technologies and Applications (CUTE 2015), both held in Cebu, Philippines, December 15 - 17, 2015. The aim of these two meetings was to promote discussion and interaction among academics, researchers and professionals in the field of computer science covering topics including mobile computing, security and trust management, multimedia systems and devices, networks and communications, databases and data mining, and ubiquitous computing technologies such as ubiquitous communication and networking, ubiquitous software technology, ubiquitous systems and applications, security and privacy. These proceedings reflect the state-of-the-art in the development of computational methods, numerical simulations, error and uncertainty analysis and novel applications of new processing techniques in engineering, science, and other disciplines related to computer science.




Modern Fortran


Book Description

Modern Fortran teaches you to develop fast, efficient parallel applications using twenty-first-century Fortran. In this guide, you’ll dive into Fortran by creating fun apps, including a tsunami simulator and a stock price analyzer. Filled with real-world use cases, insightful illustrations, and hands-on exercises, Modern Fortran helps you see this classic language in a whole new light. Summary Using Fortran, early and accurate forecasts for hurricanes and other major storms have saved thousands of lives. Better designs for ships, planes, and automobiles have made travel safer, more efficient, and less expensive than ever before. Using Fortran, low-level machine learning and deep learning libraries provide incredibly easy, fast, and insightful analysis of massive data. Fortran is an amazingly powerful and flexible programming language that forms the foundation of high performance computing for research, science, and industry. And it's come a long, long way since starting life on IBM mainframes in 1956. Modern Fortran is natively parallel, so it's uniquely suited for efficiently handling problems like complex simulations, long-range predictions, and ultra-precise designs. If you're working on tasks where speed, accuracy, and efficiency matter, it's time to discover—or re-discover—Fortran.. About the technology For over 60 years Fortran has been powering mission-critical scientific applications, and it isn't slowing down yet! Rock-solid reliability and new support for parallel programming make Fortran an essential language for next-generation high-performance computing. Simply put, the future is in parallel, and Fortran is already there. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the book Modern Fortran teaches you to develop fast, efficient parallel applications using twenty-first-century Fortran. In this guide, you'll dive into Fortran by creating fun apps, including a tsunami simulator and a stock price analyzer. Filled with real-world use cases, insightful illustrations, and hands-on exercises, Modern Fortran helps you see this classic language in a whole new light. What's inside Fortran's place in the modern world Working with variables, arrays, and functions Module development Parallelism with coarrays, teams, and events Interoperating Fortran with C About the reader For developers and computational scientists. No experience with Fortran required. About the author Milan Curcic is a meteorologist, oceanographer, and author of several general-purpose Fortran libraries and applications. Table of Contents PART 1 - GETTING STARTED WITH MODERN FORTRAN 1 Introducing Fortran 2 Getting started: Minimal working app PART 2 - CORE ELEMENTS OF FORTRAN 3 Writing reusable code with functions and subroutines 4 Organizing your Fortran code using modules 5 Analyzing time series data with arrays 6 Reading, writing, and formatting your data PART 3 - ADVANCED FORTRAN USE 7 Going parallel with Fortan coarrays 8 Working with abstract data using derived types 9 Generic procedures and operators for any data type 10 User-defined operators for derived types PART 4 - THE FINAL STRETCH 11 Interoperability with C: Exposing your app to the web 12 Advanced parallelism with teams, events, and collectives




High Performance Computing


Book Description

This book constitutes the refereed proceedings of the 35th International Conference on High Performance Computing, ISC High Performance 2020, held in Frankfurt/Main, Germany, in June 2020.* The 27 revised full papers presented were carefully reviewed and selected from 87 submissions. The papers cover a broad range of topics such as architectures, networks & infrastructure; artificial intelligence and machine learning; data, storage & visualization; emerging technologies; HPC algorithms; HPC applications; performance modeling & measurement; programming models & systems software. *The conference was held virtually due to the COVID-19 pandemic. Chapters "Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) Streaming-Aggregation Hardware Design and Evaluation", "Solving Acoustic Boundary Integral Equations Using High Performance Tile Low-Rank LU Factorization", "Scaling Genomics Data Processing with Memory-Driven Computing to Accelerate Computational Biology", "Footprint-Aware Power Capping for Hybrid Memory Based Systems", and "Pattern-Aware Staging for Hybrid Memory Systems" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Software for Exascale Computing - SPPEXA 2016-2019


Book Description

This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest.




Artificial Intelligence and Evolutionary Algorithms in Engineering Systems


Book Description

The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems (ICAEES 2014) held at Noorul Islam Centre for Higher Education, Kumaracoil, India. These research papers provide the latest developments in the broad area of use of artificial intelligence and evolutionary algorithms in engineering systems. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.




OpenACC for Programmers


Book Description

The Complete Guide to OpenACC for Massively Parallel Programming Scientists and technical professionals can use OpenACC to leverage the immense power of modern GPUs without the complexity traditionally associated with programming them. OpenACCTM for Programmers is one of the first comprehensive and practical overviews of OpenACC for massively parallel programming. This book integrates contributions from 19 leading parallel-programming experts from academia, public research organizations, and industry. The authors and editors explain each key concept behind OpenACC, demonstrate how to use essential OpenACC development tools, and thoroughly explore each OpenACC feature set. Throughout, you’ll find realistic examples, hands-on exercises, and case studies showcasing the efficient use of OpenACC language constructs. You’ll discover how OpenACC’s language constructs can be translated to maximize application performance, and how its standard interface can target multiple platforms via widely used programming languages. Each chapter builds on what you’ve already learned, helping you build practical mastery one step at a time, whether you’re a GPU programmer, scientist, engineer, or student. All example code and exercise solutions are available for download at GitHub. Discover how OpenACC makes scalable parallel programming easier and more practical Walk through the OpenACC spec and learn how OpenACC directive syntax is structured Get productive with OpenACC code editors, compilers, debuggers, and performance analysis tools Build your first real-world OpenACC programs Exploit loop-level parallelism in OpenACC, understand the levels of parallelism available, and maximize accuracy or performance Learn how OpenACC programs are compiled Master OpenACC programming best practices Overcome common performance, portability, and interoperability challenges Efficiently distribute tasks across multiple processors Register your product at informit.com/register for convenient access to downloads, updates, and/or corrections as they become available.