Operation of SiGe BiCMOS Technology Under Extreme Environments


Book Description

Operation of SiGe BiCMOS Technology Under Extreme Environments Tianbing Chen 96 pages Directed by Dr. John D. Cressler "Extreme environment electronics" represents an important niche market and spans the operation of electronic components in surroundings lying outside the domain of conventional commercial, or even military specifications. Such extreme environments would include, for instance, operation to very low temperatures (e.g., to 77 K or even 4.2 K), operation to very high temperatures (e.g., to 200 C or even 300 C), and operation in a radiation-rich environment (e.g., space). The suitability of SiGe BiCMOS technology for extreme environment electronics applications is assessed in this work. The suitability of SiGe HBTs for use in high-temperature electronics applications is first investigated. SiGe HBTs are shown to exhibit sufficient current gain, frequency response, breakdown voltage, achieve acceptable device reliability, and improved low-frequency noise, at temperatures as high as 200-300 C.A comprehensive investigation of substrate bias effects on device performance, thermal properties, and reliability of vertical SiGe HBTs fabricated on CMOS-compatible, thin-film SOI, is presented. The impact of 63 MeV protons on these vertical SiGe HBTs fabricated on a CMOS-compatible SOI is then investigated. Proton irradiation creates G/R trap centers in SOI SiGe HBTs, creating positive charge at the buried oxide interface, effectively delaying the onset of the Kirk effect at high current density, which increases the frequency response of SOI SiGe HBTs following radiation. The thermodynamic stability of device-relevant epitaxial SiGe strained layers under proton irradiation is also investigated using x-ray diffraction techniques. Irradiation with 63 MeV protons is found to introduce no significant microdefects into the SiGe thin films, regardless of the starting stability condition of the SiGe film, and thus does not appear to be an issue for the use of SiGe HBT technology in emerging space systems. CMOS device reliability for emerging cryogenic space electronics applications is also assessed. CMOS device performance improves with cooling, however, CMOS device reliability becomes worse at decreased temperatures due to aggravated hot-carrier effects. The device lifetime is found to be a strong function of gate length, suggesting that design tradeoffs are inevitable.




Design of High-speed SiGe HBT BiCMOS Circuits for Extreme Environment Applications


Book Description

The objective of this work is to investigate the suitability of applying silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) bipolar complementary metal oxide semiconductor (BiCMOS) technology to extreme environments and to design high-speed circuits in this technology to demonstrate their reliable operation under these conditions. This research focuses on exploring techniques for hardening SiGe HBT digital logic for single event upset (SEU) based on principles of radiation hardening by design (RHBD) as well as on the cryogenic characterization of SiGe HBTs and designing broadband amplifiers for operation at cryogenic temperatures. Representative circuits ranging from shift registers featuring multiple architectures to broadband analog circuits have been implemented in various generations of this technology to enable this effort.




Operation of Inverse Mode SiGe HBTs and Ultra-scaled CMOS Devices in Extreme Environments


Book Description

The objective of this work is to investigate the performance of SiGe HBTs and scaled CMOS devices in extreme environments. In this work, the inverse mode operation of SiGe HBTs is investigated as a potential solution to the vulnerability of SiGe HBTs to single event effects. The performance limitations of SiGe HBTs operating in inverse mode are investigated through an examination of the effects of scaling on inverse mode performance and optimization schemes for inverse mode performance enhancements are discussed and demonstrated. In addition the performance of scaled MOSFETs, that constitute the digital backbone of any BiCMOS technology, is investigated under radiation exposure and cryogenic temperatures. Extreme environments and their effects on semiconductor devices are introduced in Chapter 1. The immunity of 90nm MOSFETs to total ionizing dose damage under proton radiation is demonstrated. Inverse mode operation of SiGe HBTs is introduced in Chapter 2 as a potential radiation hard solution by design. The effect of scaling on inverse mode performance of SiGe HBTs is investigated and the performance limitations in inverse mode are identified. Optimization schemes for improving inverse mode performance of SiGe HBTs are discussed in Chapter 3. Inverse mode performance enhancement is demonstrated experimentally in optimized device structures manufactured in a commercial third generation SiGe HBT BiCMOS platform. Further, a cascode device structure, the combines the radiation immunity of an inverse mode structure with the performance of a forward mode common emitter device is XIV discussed. Finally, idealized doping profiles for inverse mode performance enhancement is discussed through TCAD simulations. The cryogenic performance of inverse mode SiGe HBTs are discussed in Chapter 4. A novel base current behavior at cryogenic temperature is identified and its effect on the inverse mode performance is discussed. Matching performance of a 90nm bulk CMOS technology at cryogenic temperatures is investigated experimentally and through TCAD simulations in Chapter 5. The effect of various process parameters on the temperature sensitivity of threshold voltage mismatch is discussed. The potential increase of mismatch in subthreshold MOSFETs operating in cryogenic temperatures due to hot carrier effects is also investigated.




Interface Circuit Designs for Extreme Environments Using Sige Bicmos Technology


Book Description

SiGe BiCMOS technology has many advantageous properties that, when leveraged, enable circuit design for extreme environments. This work will focus on designs targeted for space system avioinics platforms under the NASA ETDP program. The program specifications include operation under temperatures ranging from -180 C to +125 C and with radiation tolerance up to total ionizing dose of 100 krad with built-in single-event latch-up tolerance. To the author's knowledge, this work presents the first design and measurement of a wide temperature range enabled, radiation tolerant as built, RS-485 wireline transceiver in SiGe BiCMOS technology. This work also includes design and testing of a charge amplification channel front-end intended to act as the interface between a piezoelectric sensor and an ADC. An additional feature is the design and testing of a 50 Ohm output buffer utilized for testing of components in a lab setting.




Low-noise Circuitry for Extreme Environment Detection Systems Implemented in SiGe BiCMOS Technology


Book Description

This work evaluates two SiGe BiCMOS technology platforms as candidates for implementing extreme environment capable circuitry, with an emphasis on applications requiring high sensitivity and low noise. In Chapter 1, applications requiring extreme environment sensing circuitry are briefly reviewed and the motivation for undertaking this study is outlined. A case is then presented for the use of SiGe BiCMOS technology to meet this need, documenting the benefits of operating SiGe HBTs at cryogenic temperatures. Chapter 1 concludes with a brief description of device radiation effects in bipolar and CMOS devices, and a basic overview of noise in semiconductor devices and electronic components. Chapter 2 further elaborates on a specific application requiring low-noise circuitry capable of operating at cryogenic temperatures and proposes a number of variants of band-gap reference circuits for use in said system. Detailed simulation and theoretical analysis of the proposed circuits are presented and compared with measurements, validating the techniques used in the proposed designs and emphasizing the need for further understanding of device level low-temperature noise phenomena. Chapter 3 evaluates the feasibility of using a SiGe BiCMOS process, whose response to ionizing radiation was previously uncharacterized, for use in unshielded electronic systems needed for exploration of deep space planets or moons, specifically targeting Europa mission requirements. Measured total ionizing dose (TID) responses for both CMOS and bipolar SiGe devices are presented and compared to similar technologies. The mechanisms responsible for device degradation are outlined, and an explanation of unexpected results is proposed. Finally, Chapter 4 summarizes the work presented and understanding provided by this thesis, concluding by outlining future research needed to build upon this study and fully realize SiGe based extreme environment capable precision electronic systems.




SiGe BiCMOS Circuit and System Design and Characterization for Extreme Environment Applications


Book Description

This thesis describes the architecture, verification, qualification, and packaging of a 16-channel silicon-germanium (SiGe) Remote Electronics Unit (REU) designed for use in extreme environment applications encountered on NASA's exploration roadmap. The SiGe REU was targeted for operation outside the protective electronic "vaults" in a lunar environment that exhibits cyclic temperature swings from -180o.C to 120o.C, a total ionizing dose (TID) radiation level of 100 krad, and heavy ion exposure (single event effects) over the mission lifetime. The REU leverages SiGe BiCMOS technological advantages and design methodologies, enabling exceptional extreme environment robustness. It utilizes a mixed-signal Remote Sensor Interface (RSI) ASIC and an HDL-based Remote Digital Control (RDC) architecture to read data from up to 16 sensors using three different analog channel types with customizable gain, current stimulus, calibration, and sample rate with 12-bit analog-to-digital conversion. The SiGe REU exhibits excellent channel sensitivity throughout the temperature range, hardness to at least 100 krad TID exposure, and single event latchup immunity, representing the cutting edge in cold-capable electronic systems. The SiGe REU is the first example within a potential paradigm shift in space-based electronics.




Extreme Environment Electronics


Book Description

Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.




Silicon-germanium BiCMOS Device and Circuit Design for Extreme Environment Applications


Book Description

Silicon-germanium (SiGe) BiCMOS technology platforms have proven invaluable for implementing a wide variety of digital, RF, and mixed-signal applications in extreme environments such as space, where maintaining high levels of performance in the presence of low temperatures and background radiation is paramount. This work will focus on the investigation of the total-dose radiation tolerance of a third generation complementary SiGe:C BiCMOS technology platform. Tolerance will be quantified under proton and X-ray radiation sources for both the npn and pnp HBT, as well as for an operational amplifier built with these devices. Furthermore, a technique known as junction isolation radiation hardening will be proposed and tested with the goal of improving the SEE sensitivity of the npn in this platform by reducing the charge collected by the subcollector in the event of a direct ion strike. To the author's knowledge, this work presents the first design and measurement results for this form of RHBD.




Fabrication of SiGe HBT BiCMOS Technology


Book Description

SiGe HBT BiCMOS technology is the obvious groundbreaker of the Si heterostructures application space. To date virtually every major player in the communications electronics market either has SiGe up and running in-house or is using someone else’s SiGe fab as foundry for their designers. Key to this success lies in successful integration of the SiGe HBT and Si CMOS, with no loss of performance from either device. Filled with contributions from leading experts, Fabrication of SiGe HBT BiCMOS Technologies brings together a complete discussion of these topics into a single resource. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume examines the design, fabrication, and application of silicon heterostructure transistors. A novel aspect of this book the inclusion of numerous snapshot views of the industrial state-of-the-art for SiGe HBT BiCMOS technology. It has been carefully designed to provide a useful basis of comparison for the current status and future course of the global industry. In addition to the copious technical material and the numerous references contained in each chapter, the book includes easy-to-reference appendices on the properties of Si and Ge, the generalized Moll-Ross relations, integral charge-control relations, and sample SiGe HBT compact model parameters.




Modeling of Minority Carrier Recombination and Resistivity in Sige Bicmos Technology for Extreme Environment Applications


Book Description

This work presents a summary of experimental data and theoretical models that characterize the temperature-dependent behavior of key carrier-transport parameters in silicon down to cryogenic temperatures. In extreme environment applications such as space-based electronics, accurate models of carrier recombination, carrier mobility, and incomplete ionization of dopants form a necessary foundation for the development of reliable high-performance devices and circuits. Not only do these models have a wide impact on the simulated DC and AC performance of devices, but they also play a critical role in predicting the behavior of important phenomena such as single event upset in digital logic circuits. With this motivation, an overview is given of SRH recombination theory, addressing in particular the dependence of recombination lifetime on temperature and injection level. Carrier lifetime measurement methods are reviewed, and experiments to study carrier lifetimes in the substrate of a commercial SiGe BiCMOS process are presented. The experimental data is analyzed and leveraged in order to develop calibrated TCAD-relevant models. Similarly, an overview of low-temperature resistivity in silicon is presented. Modeling of resistivity over temperature is discussed, addressing the prevailing theoretical models for both carrier mobility and incomplete ionization of dopants. Experimental measurements of the temperature dependence of resistivity in both p-type and n-type silicon are presented, and calibrated TCAD-relevant models for carrier mobility and incomplete ionization are developed. Finally, the ability to integrate these calibrated models within commercial TCAD software is demonstrated. In addition, applications for these accurate temperature-dependent models are discussed, and future directions are outlined for research into cryogenic modeling of fundamental physical parameters.