Operational Quantum Physics


Book Description

Operational Quantum Physics offers a systematic presentation of quantum mechanics which makes exhaustive use of the full probabilistic structure of this theory. Accordingly the notion of an observable as a positive operator valued (POV) measure is explained in great detail, and the ensuing quantum measurement theory is developed and applied both to a resolution of long-standing conceptual and interpretational puzzles in the foundations of quantum mechanics, and to an analysis of various recent fundamental experiments. The book, or different parts of it, may be of interest to advanced students or researchers in quantum physics, to philosophers of physics, and to mathematicians working in operator valued measures.










Operational Quantum Theory I


Book Description

Operational Quantum Theory I is a distinguished work on quantum theory at an advanced algebraic level. The classically oriented hierarchy with objects such as particles as the primary focus, and interactions of these objects as the secondary focus is reversed with the operational interactions as basic quantum structures. Quantum theory, specifically nonrelativistic quantum mechanics, is developed from the theory of Lie group and Lie algebra operations acting on both finite and infinite dimensional vector spaces. In this book, time and space related finite dimensional representation structures and simple Lie operations, and as a non-relativistic application, the Kepler problem which has long fascinated quantum theorists, are dealt with in some detail. Operational Quantum Theory I features many structures which allow the reader to better understand the applications of operational quantum theory, and to provide conceptually appropriate descriptions of the subject. Operational Quantum Theory I aims to understand more deeply on an operational basis what one is working with in nonrelativistic quantum theory, but also suggests new approaches to the characteristic problems of quantum mechanics.




Quantum Measurement


Book Description

This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4. Foundations discusses a selection of foundational topics (quantum-classical contrast, Bell nonlocality, measurement limitations, measurement problem, operational axioms) from a measurement theoretic perspective. The book is addressed to physicists, mathematicians and philosophers of physics with an interest in the mathematical and conceptual foundations of quantum physics, specifically from the perspective of measurement theory.







Operational Quantum Theory II


Book Description

Operational Quantum Theory II is a distinguished work on quantum theory at an advanced algebraic level. The classically oriented hierarchy with objects such as particles as the primary focus, and interactions of the objects as the secondary focus is reversed with the operational interactions as basic quantum structures. Quantum theory, specifically relativistic quantum field theory is developed the theory of Lie group and Lie algebra operations acting on both finite and infinite dimensional vector spaces. This book deals with the operational concepts of relativistic space time, the Lorentz and Poincaré group operations and their unitary representations, particularly the elementary articles. Also discussed are eigenvalues and invariants for non-compact operations in general as well as the harmonic analysis of noncompact nonabelian Lie groups and their homogeneous spaces. In addition to the operational formulation of the standard model of particle interactions, an attempt is made to understand the particle spectrum with the masses and coupling constants as the invariants and normalizations of a tangent representation structure of a an homogeneous space time model. Operational Quantum Theory II aims to understand more deeply on an operational basis what one is working with in relativistic quantum field theory, but also suggests new solutions to previously unsolved problems.




Operational Quantum Theory I


Book Description

Operational Quantum Theory I is a distinguished work on quantum theory at an advanced algebraic level. The classically oriented hierarchy with objects such as particles as the primary focus, and interactions of these objects as the secondary focus is reversed with the operational interactions as basic quantum structures. Quantum theory, specifically nonrelativistic quantum mechanics, is developed from the theory of Lie group and Lie algebra operations acting on both finite and infinite dimensional vector spaces. In this book, time and space related finite dimensional representation structures and simple Lie operations, and as a non-relativistic application, the Kepler problem which has long fascinated quantum theorists, are dealt with in some detail. Operational Quantum Theory I features many structures which allow the reader to better understand the applications of operational quantum theory, and to provide conceptually appropriate descriptions of the subject. Operational Quantum Theory I aims to understand more deeply on an operational basis what one is working with in nonrelativistic quantum theory, but also suggests new approaches to the characteristic problems of quantum mechanics.




A First Introduction to Quantum Physics


Book Description

In this undergraduate textbook, now in its 2nd edition, the author develops the quantum theory from first principles based on very simple experiments: a photon traveling through beam splitters to detectors, an electron moving through magnetic fields, and an atom emitting radiation. From the physical description of these experiments follows a natural mathematical description in terms of matrices and complex numbers. The first part of the book examines how experimental facts force us to let go of some deeply held preconceptions and develops this idea into a description of states, probabilities, observables, and time evolution. The quantum mechanical principles are illustrated using applications such as gravitational wave detection, magnetic resonance imaging, atomic clocks, scanning tunneling microscopy, and many more. The first part concludes with an overview of the complete quantum theory. The second part of the book covers more advanced topics, including the concept of entanglement, the process of decoherence or how quantum systems become classical, quantum computing and quantum communication, and quantum particles moving in space. Here, the book makes contact with more traditional approaches to quantum physics. The remaining chapters delve deeply into the idea of uncertainty relations and explore what the quantum theory says about the nature of reality. The book is an ideal accessible introduction to quantum physics, tested in the classroom, with modern examples and plenty of end-of-chapter exercises.




Current Research in Operational Quantum Logic


Book Description

The present volume has its origins in a pair of informal workshops held at the Free University of Brussels, in June of 1998 and May of 1999, named "Current Research 1 in Operational Quantum Logic". These brought together mathematicians and physicists working in operational quantum logic and related areas, as well as a number of interested philosophers of science, for a rare opportunity to discuss recent developments in this field. After some discussion, it was decided that, rather than producing a volume of conference proceedings, we would try to organize the conferees to produce a set of comprehensive survey papers, which would not only report on recent developments in quantum logic, but also provide a tutorial overview of the subject suitable for an interested non-specialist audience. The resulting volume provides an overview of the concepts and methods used in current research in quantum logic, viewed both as a branch of mathemati cal physics and as an area of pure mathematics. The first half of the book is concerned with the algebraic side of the subject, and in particular the theory of orthomodular lattices and posets, effect algebras, etc. In the second half of the book, special attention is given to categorical methods and to connections with theoretical computer science. At the 1999 workshop, we were fortunate to hear three excellent lectures by David J. Foulis, represented here by two contributions. Dave's work, spanning 40 years, has helped to define, and continues to reshape, the field of quantum logic.