Operations Management and Data Analytics Modelling


Book Description

Operations Management and Data Analytics Modelling: Economic Crises Perspective addresses real operation management problems in thrust areas like the healthcare and energy management sectors and Industry 4.0. It discusses recent advances and trends in developing data-driven operation management-based methodologies, big data analysis, application of computers in industrial engineering, optimization techniques, development of decision support systems for industrial operation, the role of a multiple-criteria decision-making (MCDM) approach in operation management, fuzzy set theory-based operation management modelling and Lean Six Sigma. Features Discusses the importance of data analytics in industrial operations to improve economy Provides step-by-step implementation of operation management models to identify best practices Covers in-depth analysis using data-based operation management tools and techniques Discusses mathematical modelling for novel operation management models to solve industrial problems This book is aimed at graduate students and professionals in the field of industrial and production engineering, mechanical engineering and materials science.




Applied Big Data Analytics in Operations Management


Book Description

Operations management is a tool by which companies can effectively meet customers’ needs using the least amount of resources necessary. With the emergence of sensors and smart metering, big data is becoming an intrinsic part of modern operations management. Applied Big Data Analytics in Operations Management enumerates the challenges and creative solutions and tools to apply when using big data in operations management. Outlining revolutionary concepts and applications that help businesses predict customer behavior along with applications of artificial neural networks, predictive analytics, and opinion mining on business management, this comprehensive publication is ideal for IT professionals, software engineers, business professionals, managers, and students of management.




Big Data Analytics in Supply Chain Management


Book Description

In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.




Data Analysis for Business, Economics, and Policy


Book Description

A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.




Business Analytics with Management Science Models and Methods


Book Description

This book is about prescriptive analytics. It provides business practitioners and students with a selected set of management science and optimization techniques and discusses the fundamental concepts, methods, and models needed to understand and implement these techniques in the era of Big Data. A large number of management science models exist in the body of literature today. These models include optimization techniques or heuristics, static or dynamic programming, and deterministic or stochastic modeling. The topics selected in this book, mathematical programming and simulation modeling, are believed to be among the most popular management science tools, as they can be used to solve a majority of business optimization problems. Over the years, these techniques have become the weapon of choice for decision makers and practitioners when dealing with complex business systems.




Predictive Business Analytics


Book Description

Discover the breakthrough tool your company can use to make winning decisions This forward-thinking book addresses the emergence of predictive business analytics, how it can help redefine the way your organization operates, and many of the misconceptions that impede the adoption of this new management capability. Filled with case examples, Predictive Business Analytics defines ways in which specific industries have applied these techniques and tools and how predictive business analytics can complement other financial applications such as budgeting, forecasting, and performance reporting. Examines how predictive business analytics can help your organization understand its various drivers of performance, their relationship to future outcomes, and improve managerial decision-making Looks at how to develop new insights and understand business performance based on extensive use of data, statistical and quantitative analysis, and explanatory and predictive modeling Written for senior financial professionals, as well as general and divisional senior management Visionary and effective, Predictive Business Analytics reveals how you can use your business's skills, technologies, tools, and processes for continuous analysis of past business performance to gain forward-looking insight and drive business decisions and actions.




Predictive Analytics


Book Description

Predictive analytics refers to making predictions about the future based on different parameters which are historical data, machine learning, and artificial intelligence. This book provides the most recent advances in the field along with case studies and real-world examples. It discusses predictive modeling and analytics in reliability engineering and introduces current achievements and applications of artificial intelligence, data mining, and other techniques in supply chain management. It covers applications to reliability engineering practice, presents numerous examples to illustrate the theoretical results, and considers and analyses case studies and real-word examples. The book is written for researchers and practitioners in the field of system reliability, quality, supply chain management, and logistics management. Students taking courses in these areas will also find this book of interest.




Decision Management Systems


Book Description

"A very rich book sprinkled with real-life examples as well as battle-tested advice.” —Pierre Haren, VP ILOG, IBM "James does a thorough job of explaining Decision Management Systems as enablers of a formidable business transformation.” —Deepak Advani, Vice President, Business Analytics Products and SPSS, IBM Build Systems That Work Actively to Help You Maximize Growth and Profits Most companies rely on operational systems that are largely passive. But what if you could make your systems active participants in optimizing your business? What if your systems could act intelligently on their own? Learn, not just report? Empower users to take action instead of simply escalating their problems? Evolve without massive IT investments? Decision Management Systems can do all that and more. In this book, the field’s leading expert demonstrates how to use them to drive unprecedented levels of business value. James Taylor shows how to integrate operational and analytic technologies to create systems that are more agile, more analytic, and more adaptive. Through actual case studies, you’ll learn how to combine technologies such as predictive analytics, optimization, and business rules—improving customer service, reducing fraud, managing risk, increasing agility, and driving growth. Both a practical how-to guide and a framework for planning, Decision Management Systems focuses on mainstream business challenges. Coverage includes Understanding how Decision Management Systems can transform your business Planning your systems “with the decision in mind” Identifying, modeling, and prioritizing the decisions you need to optimize Designing and implementing robust decision services Monitoring your ongoing decision-making and learning how to improve it Proven enablers of effective Decision Management Systems: people, process, and technology Identifying and overcoming obstacles that can derail your Decision Management Systems initiative




Modeling Techniques in Predictive Analytics


Book Description

Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you're new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you're already a modeler, programmer, or manager, it will teach you crucial skills you don't yet have. This guide illuminates the discipline through realistic vignettes and intuitive data visualizations-not complex math. Thomas W. Miller, leader of Northwestern University's pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today's key applications for predictive analytics, delivering skills and knowledge to put models to work-and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively.




Handbook of Operations Analytics Using Data Envelopment Analysis


Book Description

This handbook focuses on Data Envelopment Analysis (DEA) applications in operations analytics which are fundamental tools and techniques for improving operation functions and attaining long-term competitiveness. In fact, the handbook demonstrates that DEA can be viewed as Data Envelopment Analytics. Chapters include a review of cross-efficiency evaluation; a case study on measuring the environmental performance of OECS countries; how to select a set of performance metrics in DEA with an application to American banks; a relational network model to take the operations of individual periods into account in measuring efficiencies; how the efficient frontier methods DEA and stochastic frontier analysis (SFA) can be used synergistically; and how to integrate DEA and multidimensional scaling. In other chapters, authors construct a dynamic three-stage network DEA model; a bootstrapping based methodology to evaluate returns to scale and convexity assumptions in DEA; hybridizing DEA and cooperative games; using DEA to represent the production technology and directional distance functions to measure band performance; an input-specific Luenberger energy and environmental productivity indicator; and the issue of reference set by differentiating between the uniquely found reference set and the unary and maximal types of the reference set. Finally, additional chapters evaluate and compare the technological advancement observed in different hybrid electric vehicles (HEV) market segments over the past 15 years; radial measurement of efficiency for the production process possessing multi-components under different production technologies; issues around the use of accounting information in DEA; how to use DEA environmental assessment to establish corporate sustainability; a summary of research efforts on DEA environmental assessment applied to energy in the last 30 years; and an overview of DEA and how it can be utilized alone and with other techniques to investigate corporate environmental sustainability questions.