Operator Algebras and Quantum Statistical Mechanics 1


Book Description

In this book we describe the elementary theory of operator algebras and parts of the advanced theory which are of relevance, or potentially of relevance, to mathematical physics. Subsequently we describe various applications to quantum statistical mechanics. At the outset of this project we intended to cover this material in one volume but in the course of develop ment it was realized that this would entail the omission ofvarious interesting topics or details. Consequently the book was split into two volumes, the first devoted to the general theory of operator algebras and the second to the applications. This splitting into theory and applications is conventional but somewhat arbitrary. In the last 15-20 years mathematical physicists have realized the importance of operator algebras and their states and automorphisms for problems of field theory and statistical mechanics. But the theory of 20 years aga was largely developed for the analysis of group representations and it was inadequate for many physical applications. Thus after a short honey moon period in which the new found tools of the extant theory were applied to the most amenable problems a longer and more interesting period ensued in which mathematical physicists were forced to redevelop the theory in relevant directions. New concepts were introduced, e. g. asymptotic abelian ness and KMS states, new techniques applied, e. g. the Choquet theory of barycentric decomposition for states, and new structural results obtained, e. g. the existence of a continuum of nonisomorphic type-three factors.




Operator Algebras and Quantum Statistical Mechanics


Book Description

For almost two decades, this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. Major changes in the new edition relate to Bose-Einstein condensation, the dynamics of the X-Y model and questions on phase transitions.




C*-Algebras and W*-Algebras


Book Description

From the reviews: "This book is an excellent and comprehensive survey of the theory of von Neumann algebras. It includes all the fundamental results of the subject, and is a valuable reference for both the beginner and the expert." Mathematical Reviews




Operator Algebras and Quantum Statistical Mechanics


Book Description

For almost two decades, this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. Major changes in the new edition relate to Bose-Einstein condensation, the dynamics of the X-Y model and questions on phase transitions.




Operator Algebras and Quantum Statistical Mechanics


Book Description

In this book we describe the elementary theory of operator algebras and parts of the advanced theory which are of relevance, or potentially of relevance, to mathematical physics. Subsequently we describe various applications to quantum statistical mechanics. At the outset of this project we intended to cover this material in one volume but in the course of develop ment it was realized that this would entail the omission of various interesting topics or details. Consequently the book was split into two volumes, the first devoted to the general theory of operator algebras and the second to the applications. This splitting into theory and applications is conventional but somewhat arbitrary. In the last 15-20 years mathematical physicists have realized the importance of operator algebras and their states and automorphisms for problems offield theory and statistical mechanics. But the theory of 20 years ago was largely developed for the analysis of group representations and it was inadequate for many physical applications. Thus after a short honey moon period in which the new found tools of the extant theory were applied to the most amenable problems a longer and more interesting period ensued in which mathematical physicists were forced to redevelop the theory in relevant directions. New concepts were introduced, e. g. asymptotic abelian ness and KMS states, new techniques applied, e. g. the Choquet theory of barycentric decomposition for states, and new structural results obtained, e. g. the existence of a continuum of nonisomorphic type-three factors.




Operator Algebras and Quantum Statistical Mechanics 1


Book Description

In this book we describe the elementary theory of operator algebras and parts of the advanced theory which are of relevance, or potentially of relevance, to mathematical physics. Subsequently we describe various applications to quantum statistical mechanics. At the outset of this project we intended to cover this material in one volume but in the course of develop ment it was realized that this would entail the omission ofvarious interesting topics or details. Consequently the book was split into two volumes, the first devoted to the general theory of operator algebras and the second to the applications. This splitting into theory and applications is conventional but somewhat arbitrary. In the last 15-20 years mathematical physicists have realized the importance of operator algebras and their states and automorphisms for problems of field theory and statistical mechanics. But the theory of 20 years aga was largely developed for the analysis of group representations and it was inadequate for many physical applications. Thus after a short honey moon period in which the new found tools of the extant theory were applied to the most amenable problems a longer and more interesting period ensued in which mathematical physicists were forced to redevelop the theory in relevant directions. New concepts were introduced, e. g. asymptotic abelian ness and KMS states, new techniques applied, e. g. the Choquet theory of barycentric decomposition for states, and new structural results obtained, e. g. the existence of a continuum of nonisomorphic type-three factors.




Operator Algebras and Quantum Statistical Mechanics II


Book Description

For almost two decades, this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. Major changes in the new edition relate to Bose-Einstein condensation, the dynamics of the X-Y model and questions on phase transitions.




Operator Theory, Operator Algebras, and Matrix Theory


Book Description

This book consists of invited survey articles and research papers in the scientific areas of the “International Workshop on Operator Algebras, Operator Theory and Applications,” which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.




Quantum Symmetries on Operator Algebras


Book Description

In the last 20 years, the study of operator algebras has developed from a branch of functional analysis to a central field of mathematics with applications and connections with different areas in both pure mathematics (foliations, index theory, K-theory, cyclic homology, affine Kac--Moody algebras, quantum groups, low dimensional topology) and mathematical physics (integrable theories, statistical mechanics, conformal field theories and the string theories of elementary particles). The theory of operator algebras was initiated by von Neumann and Murray as a tool for studying group representations and as a framework for quantum mechanics, and has since kept in touch with its roots in physics as a framework for quantum statistical mechanics and the formalism of algebraic quantum field theory. However, in 1981, the study of operator algebras took a new turn with the introduction by Vaughan Jones of subfactor theory and remarkable connections were found with knot theory, 3-manifolds, quantum groups and integrable systems in statistical mechanics and conformal field theory. The purpose of this book, one of the first in the area, is to look at these combinatorial-algebraic developments from the perspective of operator algebras; to bring the reader to the frontline of research with the minimum of prerequisites from classical theory.