Optical Effects Associated With Small Particles


Book Description

This volume is a collection of review articles by scientists who have pioneered many of the recent advances in studies of the optical effects of small particles. The book begins with a review of the multitude of sharp dielectric resonances which exist in all optical spectra as a result of particle size and shape. Latest advances in absorption and fluorescence spectroscopy of a single particle and/or an ensemble of particles are also discussed, as well as advances in the energy transfer mechanisms for molecules embedded in the particle. The effects of laser-induced heating on a single particle are reviewed in terms of the hydrodynamics and thermodynamics of the liquid droplet and its ambient gas surrounding. The limits of applying bulk optical constants to small particles which lie between the bulk substance and the quantum-sized substance are also presented.




Optical Effects Associated with Small Particles


Book Description

This volume is a collection of review articles by scientists who have pioneered many of the recent advances in studies of the optical effects of small particles. The book begins with a review of the multitude of sharp dielectric resonances which exist in all optical spectra as a result of particle size and shape. Latest advances in absorption and fluorescence spectroscopy of a single particle and/or an ensemble of particles are also discussed, as well as advances in the energy transfer mechanisms for molecules embedded in the particle. The effects of laser-induced heating on a single particle are reviewed in terms of the hydrodynamics and thermodynamics of the liquid droplet and its ambient gas surrounding. The limits of applying bulk optical constants to small particles which lie between the bulk substance and the quantum-sized substance are also presented.




Absorption and Scattering of Light by Small Particles


Book Description

Absorption and Scattering of Light by Small Particles Treating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small particles is inseparable from a full understanding of the optical behavior of the parent material-bulk matter. To divorce one concept from the other is to render any study on scattering theory seriously incomplete. Special features and important topics covered in this book include: * Classical theories of optical properties based on idealized models * Measurements for three representative materials: magnesium oxide, aluminum, and water * An extensive discussion of electromagnetic theory * Numerous exact and approximate solutions to various scattering problems * Examples and applications from physics, astrophysics, atmospheric physics, and biophysics * Some 500 references emphasizing work done since Kerker's 1969 work on scattering theory * Computer programs for calculating scattering by spheres, coated spheres, and infinite cylinders




Optical Processes in Microparticles and Nanostructures


Book Description

This Festschrift is a tribute to the eminent scholar, Professor Richard Kounai Chang, on his retirement from Yale University on June 12, 2008. During his over four decades of scientific exploration, Professor Chang has made a lasting contribution to the development of linear and nonlinear optics and devices in confined geometries, of surface second-harmonic generation and surface-enhanced Raman scattering, and of novel methods for detecting airborne aerosol pathogens. This volume assembles a collection of articles contributed by former students, collaborators, and colleagues of Professor Chang all over the world. The topics span a diverse scope in applied optics frontiers, many of which are rooted in Professor Chang's pioneering research.




Quantum Optics and the Spectroscopy of Solids


Book Description

Remarkable recent progress in quantum optics has given rise to extremely precise quantum measurements that are used in the research into the fundamentals of quantum physics, and in different branches of physics such as optical spectroscopy. This progress stimulates new technologies in the field of optical communications, optical computation and information systems. This state-of-the-art volume presents work from a Summer School on Advances in Quantum Optics and Spectroscopy of Solids, held in Ankara, Turkey, in 1995. The various contributions written by leading scientists in the field cover a wide range of subjects in this exciting area of physics, and report new and important results and ideas. Topics dealt with include the interaction of quantum light with trapped atoms and condensed matter; quantum tomography and phase analysis; and many applications of quantum optics from mesoscopic physics to correlation spectroscopy of non-classical states, which are of major importance in understanding the nature of collective excitations in solids. Audience: This book will be of interest to postgraduate students and researchers whose work involves quantum optics, solid state spectroscopy and its applications.




Nano-optics and Near-field Optical Microscopy


Book Description

"This groundbreaking book focuses on near-field microscopy which has opened up optical processes at the nanoscale for direct inspection. Further, it explores the emerging area of nano-optics which promises to make possible optical microscopy with true nanometer resolution. This frontline resource helps you achieve high resolution optical imaging of biological species and functional materials. You also find guidance in the imaging of optical device operation and new nanophotonics functionalities"--EBL.




Self-Assembled Nanostructures


Book Description

Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.




Quantum Optics of Confined Systems


Book Description

In the last few years it was seen the emergence of various new quantum phenomena specifically related with electronic or optical confinement on a sub-wavelength-size. Fast developments simultaneously occurred in the field of Atomic Physics, notably through various regimes of Cavity Quantum Electrodynamics, and in Solid State Physics, with advances in Quantum Well technology and Nanooptoelectronics. Simultaneously, breakthroughs in Near-Field Optics provided new tools which should be widely applicable to these domains. However, the key concepts used to describe these new and partly related effects are often very different and specific of the Community involved in a given development. It has been the ambition of the Meeting held at "Centre de Physique des Houches" to give an opportunity to specialists of different Communities to deepen their understanding of advances more or less intimately related to their own field, while presenting the basic concepts of these different fields through pedagogical Introductions. The audience comprised advanced students, postdocs and senior scientists, with a balanced participation of Atomic Physicists and Solid State Physicists, and had a truly international character. The considerable efforts of the lecturers, in order to present exciting new results in a language accessible to the whole audience, were the essential ingredients to achieve successfully what was the main goal of this School.







The Airborne Microparticle


Book Description

It has been thirty years since one of the authors (EJD) began a collaboration with Professor Milton Kerker at Clarkson University in Potsdam, New York using light scattering methods to study aerosol processes. The development of a relatively short-lived commercial particle levitator based on a modification of the Millikan oil drop experiment attracted their attention and led the author to the study of single droplets and solid microparticles by levitation methods. The early work on measurements of droplet evaporation rates using light scattering techniques to determine the size slowly expanded and diversified as better instrumentation was developed, and faster computers made it possible to perform Mie theory light scattering calculations with ease. Several milestones can be identified in the progress of single microparticle studies. The first is the introduction of the electrodynamic balance, which provided more robust trapping of a particle. The electrodynamic levitator, which has played an important role in atomic and molecular ion spectroscopy, leading to the Nobel Prize in Physics in 1989 shared by Wolfgang Paul of Bonn University and Hans Dehmelt of the University of Washington, was easily adapted to trap microparticles. Simultaneously, improvements in detectors for acquiring and storing light scattering data and theoretical and experimental studies of the interesting optical properties of microspheres, especially the work on morphology dependent resonances by Arthur Ashkin at the Bell Laboratories, Richard Chang, from Yale University, and Tony Campillo from the Naval Research Laboratories in Washington D. C.