Optical Imaging and Metrology


Book Description

A comprehensive review of the state of the art and advances in the field, while also outlining the future potential and development trends of optical imaging and optical metrology, an area of fast growth with numerous applications in nanotechnology and nanophysics. Written by the world's leading experts in the field, it fills the gap in the current literature by bridging the fields of optical imaging and metrology, and is the only up-to-date resource in terms of fundamental knowledge, basic concepts, methodologies, applications, and development trends.




Handbook of 3D Machine Vision


Book Description

Choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, this handbook gives an in-depth look at the most popular 3D imaging techniques. Written by key players in the field and inventors of important imaging technologies, it helps you understand the core of 3D imaging technology and choose the proper 3D imaging technique for your needs. For each technique, the book provides its mathematical foundations, summarizes its successful applications, and discusses its limitations.




Handbook of Optical Metrology


Book Description

Handbook of Optical Metrology: Principles and Applications begins by discussing key principles and techniques before exploring practical applications of optical metrology. Designed to provide beginners with an introduction to optical metrology without sacrificing academic rigor, this comprehensive text: Covers fundamentals of light sources, lenses, prisms, and mirrors, as well as optoelectronic sensors, optical devices, and optomechanical elements Addresses interferometry, holography, and speckle methods and applications Explains Moiré metrology and the optical heterodyne measurement method Delves into the specifics of diffraction, scattering, polarization, and near-field optics Considers applications for measuring length and size, displacement, straightness and parallelism, flatness, and three-dimensional shapes This new Second Edition is fully revised to reflect the latest developments. It also includes four new chapters—nearly 100 pages—on optical coherence tomography for industrial applications, interference microscopy for surface structure analysis, noncontact dimensional and profile metrology by video measurement, and optical metrology in manufacturing technology.




Quantum Metrology, Imaging, and Communication


Book Description

This book describes the experimental and theoretical bases for the development of specifically quantum-mechanical approaches to metrology, imaging, and communication. In particular, it presents novel techniques developed over the last two decades and explicates them both theoretically and by reference to experiments which demonstrate their principles in practice. The particular techniques explored include two-photon interferometry, two-photon optical aberration and dispersion cancellation, lithography, microscopy, and cryptography.




Handbook of Optical Dimensional Metrology


Book Description

Due to their speed, data density, and versatility, optical metrology tools play important roles in today's high-speed industrial manufacturing applications. Handbook of Optical Dimensional Metrology provides useful background information and practical examples to help readers understand and effectively use state-of-the-art optical metrology methods




Practical Optical Dimensional Metrology


Book Description

Provides basic explanations of the operation and application of the most common methods in the field and in commercial use. The first half of the book presents a working knowledge of the mechanism and limitations of optical dimensional measurement methods. The book concludes with a series of manufacturing application examples.




Optical Metrology


Book Description

New material on computerized optical processes, computerized ray tracing, and the fast Fourier transform, Bibre-Bragg sensors, and temporal phase unwrapping. * New introductory sections to all chapters. * Detailed discussion on lasers and laser principles, including an introduction to radiometry and photometry. * Thorough coverage of the CCD camera.




Optical Imaging in Projection Microlithography


Book Description

Here for the first time is an integrated mathematical view of the physics and numerical modeling of optical projection lithography that efficiently covers the full spectrum of the important concepts. Alfred Wong offers rigorous underpinning, clarity in systematic formulation, physical insight into emerging ideas, as well as a system-level view of the parameter tolerances required in manufacturing. Readers with a good working knowledge of calculus can follow the step-by-step development, and technologists can gather general concepts and the key equations that result. Even the casual reader will gain a perspective on the key concepts, which will likely help facilitate dialog among technologists.




Optical Imaging and Aberrations


Book Description

Ten years have passed since the publication of the first edition of this classic text in April 2001. Considerable new material amounting to 100 pages has been added in this second edition. Each chapter now contains a Summary section at the end. The new material in Chapter 4 consists of a detailed comparison of Gaussian apodization with a corresponding beam, determination of the optimum value of the Gaussian radius relative to that of the pupil to yield maximum focal-point irradiance, detailed discussion of standard deviation, aberration balancing, and Strehl ratio for primary aberrations, derivation of the aberration-free and defocused OTF, discussion of an aberrated beam yielding higher axial irradiance in a certain defocused region than its aberration-free focal-point value, illustration that aberrated PSFs lose the advantage of Gaussian apodizaton in reducing the secondary maxima of a PSF, and a brief description of the characterization of the width of a multimode beam. In Chapter 5, the effect of random longitudinal defocus on a PSF is included. The coherence length of atmospheric turbulence is calculated for looking both up and down through the atmosphere. Also discussed are the angle of arrival of a light wave propagating through turbulence, and lucky imaging where better-quality short-exposure images are selected, aligned, and added to obtain a high-quality image.




Imaging Optics


Book Description

This comprehensive and self-contained text for researchers and professionals presents a detailed account of optical imaging from the viewpoint of both ray and wave optics.