Optical Interactions In Solids (2nd Edition)


Book Description

Optical Interactions in Solids presents an extensive and unified treatment of the basic principles of the optical properties of solids. It provides a theoretical background to workers in the field of laser physics and absorption and fluorescence spectroscopy of solid state materials. The book is a comprehensive coverage of the subject and is systematically and didactically organized. The level of presentation is such that it will benefit and interest both advanced students and research workers. Group theory — which is useful throughout — is introduced early in the book advocating the scientific community to overcome the reluctance to employ this powerful method. Consistent emphasis is given throughout the book to the relevance of symmetry and to detailed calculations. Different subjects as various as quantum theory of radiation field, thermal vibrations of molecules and crystals and covalent bonding are brought together in a unified treatment which requires knowledge of all these topics and this points to the interpretation of the spectral properties of solids. The content of this work could be used as a two term graduate course in solid state spectroscopy.br>




Optical Properties of Solids


Book Description

Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed. The book further tackles current-current correlations; the fluctuation-dissipation theorem; and the effect of surface plasmons on optical properties and photoemission. People involved in the study of the optical properties of solids will find the book invaluable.




Optical Processes in Solids


Book Description

A unifying element that links the apparently diverse phenomena observed in optical processes is the dielectric dispersion of matter. It describes the response of matter to incoming electromagnetic waves and charged particles, and thus predicts their behavior in the self-induced field of matter, known as polariton and polaron effects. The energies of phonon, exciton and plasmon, quanta of collective motions of charged particles constituting the matter, are also governed by dielectric dispersion. Since the latter is a functional of the former, one can derive useful relations for their self-consistency. Nonlinear response to laser light inclusive of multiphoton processes, and excitation of atomic inner shells by synchrotron radiation, are also described. Within the configuration coordinate model, photo-induced lattice relaxation and chemical reaction are described equally to both ground and relaxed excited states, to provide a novel and global perspective on structural phase transitions and the nature of interatomic bonds. This book was first published in 2003.




Electrodynamics of Solids


Book Description

The authors of this book present a thorough discussion of the optical properties of solids, with a focus on electron states and their response to electrodynamic fields. A review of the fundamental aspects of the propagation of electromagnetic fields, and their interaction with condensed matter, is given. This is followed by a discussion of the optical properties of metals, semiconductors, and collective states of solids such as superconductors. Theoretical concepts, measurement techniques and experimental results are covered in three interrelated sections. Well-established, mature fields are discussed (for example, classical metals and semiconductors) together with modern topics at the focus of current interest. The substantial reference list included will also prove to be a valuable resource for those interested in the electronic properties of solids. The book is intended for use by advanced undergraduate and graduate students, and researchers active in the fields of condensed matter physics, materials science and optical engineering.




Optical Properties of Solids


Book Description

For final year undergraduates and graduate students in physics, this book offers an up-to-date treatment of the optical properties of solid state materials.




Optical Characterization of Solids


Book Description

Gives a comprehensive and coherent account of the basic methods to characterize a solid through its interaction with an electromagnetic field.




Solid State Physics


Book Description

Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully designed to apply the fundamental principles illustrated in the text to currently active topics of research. Basic concepts and recent advances in the field are explained in tutorial style and organized in an intuitive manner. The book is a basic reference work for students, researchers, and lecturers in any area of solid-state physics. - Features additional material on nanostructures, giving students and lecturers the most significant features of low-dimensional systems, with focus on carbon allotropes - Offers detailed explanation of dissipative and nondissipative transport, and explains the essential aspects in a field, which is commonly overlooked in textbooks - Additional material in the classical and quantum Hall effect offers further aspects on magnetotransport, with particular emphasis on the current profiles - Gives a broad overview of the band structure of solids, as well as presenting the foundations of the electronic band structure. Also features reported with new and revised material, which leads to the latest research




Optical Materials


Book Description

Optical Materials presents, in a unified form, the underlying physical and structural processes that determine the optical behavior of materials. It does this by combining elements from physics, optics, and materials science in a seamless manner, and introducing quantum mechanics when needed. The book groups the characteristics of optical materials into classes with similar behavior. In treating each type of material, the text pays particular attention to atomic composition and chemical makeup, electronic states and band structure, and physical microstructure so that the reader will gain insight into the kinds of materials engineering and processing conditions that are required to produce a material exhibiting a desired optical property. The physical principles are presented on many levels, including a physical explanation, followed by formal mathematical support and examples and methods of measurement. The reader may overlook the equations with no loss of comprehension, or may use the text to find appropriate equations for calculations of optical properties. Presents the optical properties of metals, insulators, semiconductors, laser materials, and non-linear materials Physical processes are discussed and quantified using precise mathematical treatment, followed by examples and a discussion of measurement methods Authors combine many years of expertise in condensed matter physics, classical and quantum optics, and materials science The text is written on many levels and will benefit the novice as well as the expert Explains the concept of color in materials Explains the non-linear optical behavior of materials in a unified form Appendices present rigorous derivations




Principles of the Theory of Solids


Book Description

Professor Ziman's classic textbook on the theory of solids was first pulished in 1964. This paperback edition is a reprint of the second edition, which was substantially revised and enlarged in 1972. The value and popularity of this textbook is well attested by reviewers' opinions and by the existence of several foreign language editions, including German, Italian, Spanish, Japanese, Polish and Russian. The book gives a clear exposition of the elements of the physics of perfect crystalline solids. In discussing the principles, the author aims to give students an appreciation of the conditions which are necessary for the appearance of the various phenomena. A self-contained mathematical account is given of the simplest model that will demonstrate each principle. A grounding in quantum mechanics and knowledge of elementary facts about solids is assumed. This is therefore a textbook for advanced undergraduates and is also appropriate for graduate courses.