Optical Microscanners and Microspectrometers using Thermal Bimorph Actuators


Book Description

Optical Microscanners and Microspectrometers using Thermal Bimorph Actuators shows how to design and fabricate optical microsystems using innovative technologies and and original architectures. A barcode scanner, laser projection mirror and a microspectrometer are explained in detail, starting from the system conception, discussing simulations, choice of cleanroom technologies, design, fabrication, device test, packaging all the way to the system assembly. An advanced microscanning device capable of one- and two-dimensional scanning can be integrated in a compact barcode scanning system composed of a laser diode and adapted optics. The original design of the microscanner combines efficiently the miniaturized thermal mechanical actuator and the reflecting mirror, providing a one-dimensional scanning or an unique combination of two movements, depending on the geometry. The simplicity of the device makes it a competitive component. The authors rethink the design of a miniaturized optical device and find a compact solution for a microspectrometer, based on a tunable filter and a single pixel detector. A porous silicon technology combines efficiently the optical filter function with a thermal mechanical actuator on chip. The methodology for design and process calibration are discussed in detail. The device is the core component of an infrared gas spectrometer.




Mems/Nems


Book Description

This significant and uniquely comprehensive five-volume reference is a valuable source for research workers, practitioners, computer scientists, students, and technologists. It covers all of the major topics within the subject and offers a comprehensive treatment of MEMS design, fabrication techniques, and manufacturing methods. It also includes current medical applications of MEMS technology and provides applications of MEMS to opto-electronic devices. It is clearly written, self-contained, and accessible, with helpful standard features including an introduction, summary, extensive figures and design examples with comprehensive reference lists.




Optical MEMS


Book Description

This book is a printed edition of the Special Issue Optical MEMS that was published in Micromachines




Heat Convection in Micro Ducts


Book Description

As the field of Microsystems expands into more disciplines and new applications such as RF-MEMS, Optical MEMS and Bio-MEMS, thermal management is becoming a critical issue in the operation of many microdevices, including microelectronic chips. Heat Convection in Micro Ducts focuses on the fundamental physics of convective heat transfer in microscale and specific applications such as: microchannel heat sinks, micro heat pipes, microcoolers and micro capillary pumped loops. This book will be of interest to the professional engineer and graduate student interested in learning about heat removal and temperature control in advanced integrated circuits and microelectromechanical systems.




Micromachined Mirrors


Book Description

Micromachined Mirrors provides an overview of the performance enhancements that will be realized by miniaturizing scanning mirrors like those used for laser printers and barcode scanners, and the newly enabled applications, including raster-scanning projection video displays and compact, high-speed fiber-optic components. There are a wide variety of methods used to fabricate micromachined mirrors - each with its advantages and disadvantages. There are, however, performance criteria common to mirrors made from any of these fabrication processes. For example, optical resolution is related to the mirror aperture, the mirror flatness, and the scan angle. Micromachined Mirrors provides a framework for the design of micromirrors, and derives equations showing the fundamental limits for micromirror performance. These limits provide the micromirror designer tools with which to determine the acceptable mirror geometries, and to quickly and easily determine the range of possible mirror optical resolution and scan speed.




Principles and Applications of NanoMEMS Physics


Book Description

Presents the first unified exposition of the physical principles at the heart of NanoMEMS-based devices and applications Provides newcomers with a much needed coherent scientific base for undertaking study and research in this field Takes great pains in rendering transparent advanced physical concepts and techniques, such as quantum information, second quantization, Luttinger liquids, bosonization, and superconductivity




BioMEMS


Book Description

Explosive growth in the field of microsystem technology (MST) has introduced a variety of promising products in major disciplines from microelectronics to life sciences. Especially the life sciences and health care business was, and is expected to be a major market for MST products. Undoubtedly the merging of biological sciences with micro- and nanoscience will create a scientific and technological revolution in future. Microminiaturization of devices, down to the nanoscale, approaching the size of biological structures, will be a prerequisite for the future success of life sciences. Bioanalytical and therapeutic micro- and nanosystems will be mandatory for system biologists in the long run, to obtain insight into morphology, the function and the interactive processes of the living system. With such a deeper understanding new and personalized drugs could be developed leading to a revolution in life sciences. Today, microanalytical devices are used in clinical analytics or molecular biology as gene chips. In parallel, standard microbiomedical products are employed in the intensive care and surgical theatre, mainly for monitoring and implantation purposes. The gap between these two different scientific fields will be closed, however, as soon as functional micro devices can be produced, allowing a deeper view into the function of cells and whole organisms. Here, a new discipline evolved which focuses on microsystems for living systems called "BIOMEMS". In this review at a glance the exciting field of bio-microsystems, from their beginnings to indicators of future successes are presented. It will also show that a broad penetration of micro and nano technologies into biology and medicine will be mandatory for future scientific and new product development progress in life science.




Optimal Synthesis Methods for MEMS


Book Description

The field of "microelectromechanical systems," or "MEMS," has gradually evolved from a "discipline" populated by a small group of researchers to an "enabling technology" supporting a variety of products in such diverse areas as mechanical and inertial sensors, optical projection displays, telecommunications equipment, and biology and medicine. Critical to the success of these products is the ability to design them, and this invariably involves detailed modeling of proposed designs. Over the past twenty years, such modeling has become increasingly sophisticated, with full suites of MEMS-oriented computer-aided-design tools now available worldwide. But there is another equally important side to the design process In my own book, Microsystem figuring out what to build in the first place. Design, I chose to emphasize the modeling aspect of design. The task of figuring out what to build was defined by a vague step called "creative thinking." I used practical product examples to illustrate the many subtle characteristics of successful designs, but I made no attempt to systematize the generation ofdesign proposals or optimized designs. That systemization is called "synthesis," which is the subjectofthis book.




Dynamics of Microelectromechanical Systems


Book Description

Here is a textbook for senior undergraduate and graduate level students that offers a novel and systematic look into the dynamics of MEMS. It includes numerous solved examples together with the proposed problems. The material to be found here will also be of interest to researchers with a non-mechanical background. The book focuses on the mechanical domain, specifically the dynamic sub-domain, and provides an in-depth treatment of problems that involve reliable modeling, analysis and design.




Mechanical Engineers' Handbook, Volume 2


Book Description

Full coverage of electronics, MEMS, and instrumentation and control in mechanical engineering This second volume of Mechanical Engineers' Handbook covers electronics, MEMS, and instrumentation and control, giving you accessible and in-depth access to the topics you'll encounter in the discipline: computer-aided design, product design for manufacturing and assembly, design optimization, total quality management in mechanical system design, reliability in the mechanical design process for sustainability, life-cycle design, design for remanufacturing processes, signal processing, data acquisition and display systems, and much more. The book provides a quick guide to specialized areas you may encounter in your work, giving you access to the basics of each and pointing you toward trusted resources for further reading, if needed. The accessible information inside offers discussions, examples, and analyses of the topics covered, rather than the straight data, formulas, and calculations you'll find in other handbooks. Presents the most comprehensive coverage of the entire discipline of Mechanical Engineering anywhere in four interrelated books Offers the option of being purchased as a four-book set or as single books Comes in a subscription format through the Wiley Online Library and in electronic and custom formats Engineers at all levels will find Mechanical Engineers' Handbook, Volume 2 an excellent resource they can turn to for the basics of electronics, MEMS, and instrumentation and control.