Optical Properties of Excited States in Solids


Book Description

This book presents an account of the course "Optical Properties of Excited States in Solids" held in Erice, Italy, from June 16 to 3D, 1991. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The purpose of this course was to present physical models, mathematical formalisms and experimental techniques relevant to the optical properties of excited states in solids. Some active physical species, such as ions or radicals, could survive indefinitely if they were completely 'isolated in space. Other active species, such as excited molecular and solid-state systems, are inherently unstable, even in isolation, due to the spontaneous mechanisms that may convert their excitation energies into radiation or heat. Physical parameters that may be used to characterize these excited systems are the localization or delocalization, and the coherence or incoherence, of their state excitations. In solids the excited states, whether they are localized (as for impurities in insulators) or delocalized (as they may occur in semiconductors), are relevant in several regards. Their de-excitation is extremely sensitive to the nature of the excitations of the systems, and a study of the de-excitation processes can yield a variety of information. For example, the excited states may represent the initial condition of the onset of such processes as Stokes-shifted emission, hot luminescence, symmetry-dependent Jahn-Teller and scattering processes, tunneling processes, energy transfer to like and unlike centers, superradiance, coherent radiation, and excited state absorption.




Optical Properties of Solids


Book Description

Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed. The book further tackles current-current correlations; the fluctuation-dissipation theorem; and the effect of surface plasmons on optical properties and photoemission. People involved in the study of the optical properties of solids will find the book invaluable.




Optical Properties of Solids


Book Description

For final year undergraduates and graduate students in physics, this book offers an up-to-date treatment of the optical properties of solid state materials.




Optical Properties of Solids


Book Description

This book gives an introduction to the optical properties of solids, including many new topics that have not been previously covered in other solid state texts at this level. The fundamental principles of absorption, reflection, luminescence and light scattering are discussed for a wide range of materials, including crystalline insulators and semiconductors, glasses, metals, and molecular materials. Classical and quantum models are used where appropriate along with recent experimental data. Examples include semiconductor quantum wells, organic semiconductors, vibronic solid state lasers, and nonlinear optics.




Optical Interactions In Solids (2nd Edition)


Book Description

Optical Interactions in Solids presents an extensive and unified treatment of the basic principles of the optical properties of solids. It provides a theoretical background to workers in the field of laser physics and absorption and fluorescence spectroscopy of solid state materials. The book is a comprehensive coverage of the subject and is systematically and didactically organized. The level of presentation is such that it will benefit and interest both advanced students and research workers. Group theory — which is useful throughout — is introduced early in the book advocating the scientific community to overcome the reluctance to employ this powerful method. Consistent emphasis is given throughout the book to the relevance of symmetry and to detailed calculations. Different subjects as various as quantum theory of radiation field, thermal vibrations of molecules and crystals and covalent bonding are brought together in a unified treatment which requires knowledge of all these topics and this points to the interpretation of the spectral properties of solids. The content of this work could be used as a two term graduate course in solid state spectroscopy.br>







Optical Properties of Solids


Book Description

This book is an account of the manner in which the optical phenomena observed from solids relate to their fundamental properties. Written at the graduate level, it attempts a threefold purpose: an indication of the breadth of the subject, an in-depth examination of important areas, and a text for a two-semester course. The first two chapters present introductory theory as a foundation for subsequent reading. The following ten chapters broadly concern electronic properties associated with semiconductors ranging from narrow to wide energy gap materials. Lattice properties are examined in the remaining chap ters, in which effects governed by phonons in perfect crystals, point defects, their vibrational and electronic spectra, and electron-phonon interactions are stressed. Fun and hard work, both in considerable measure, have gone into the preparation of this volume. At the University of Freiburg, W. Germany, from August 7-20, 1966, the occasion of a NATO Advanced Study Institute on "The Optical Properties of Solids," the authors of these various chapters lectured for the Institute; this volume provides essentially the "Proceed ings" of that meeting. Many major revisions of original lectures (contrac tions and enlargements) were required for better organization and presentation of the subject matter. Several abbreviated chapters appear mainly to indicate the importance of their contents in optical properties research and to indicate recently published books that provide ample coverage. We are indebted to many people: the authors for their efforts and patience; our host at the University of Freiburg, the late Professor Dr.




Optical Properties of Materials and Their Applications


Book Description

Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.




Sol-Gel Technologies for Glass Producers and Users


Book Description

Sol-Gel Techniques for Glass Producers and Users provides technological information, descriptions and characterizations of prototypes, or products already on the market, and illustrates advantages and disadvantages of the sol-gel process in comparison to other methods. The first chapter entitled "Wet Chemical Technology" gives a summary of the basic principles of the sol-gel chemistry. The most promising applications are related to coatings. Chapter 2 describes the various "Wet Chemical Coating Technologies" from glass cleaning to many deposition and post-coating treatment techniques. These include patterning of coatings through direct or indirect techniques which have became very important and for which the sol-gel processing is particularly well adapted. Chapter 3 entitled "Bulk Glass Technologies" reports on the preparation of special glasses for different applications. Chapter 4 entitled "Coatings and Materials Properties" describes the properties of the different coatings and the sol-gel materials, fibers and powders. The chapter also includes a section dedicated to the characterization techniques especially applied to sol-gel coatings and products.




Quantum Theory of Materials


Book Description

An accessible overview of the concepts and tools essential to the physics of materials, with applications, exercises, and color figures.