Unified Optical Scanning Technology


Book Description

Written by an award-winning leader in the field, this is a thoroughly integrated overview of the many facets and disciplines of optical scanning. Of particular utility to both practitioner and student are such features as: An overview of the technology and unifying principles, including active and passive scanning, optical transfer, and system architecture In-depth chapters on scanning theory and processes, scanned resolution, scanner devices and techniques, and the control of scanner beam misplacemen A comprehensive review of the government-sponsored research of agile beam steering, now primed for commercial adaptation A unique focus on the Lagrange invariant and its revealing resolution invariant




Optical Scanning


Book Description

The first three chapters cover gaussian beam characteristics, system lens design, and image quality, forming a framework that clarifies and serves the scanning process. Subsequent chapters cover the physical scanning methods holographic, polygonal, galvanometric, resonant, acoustooptic, electrooptic




Handbook of Optical and Laser Scanning


Book Description

From its initial publication titled Laser Beam Scanning in 1985 to Handbook of Optical and Laser Scanning, now in its second edition, this reference has kept professionals and students at the forefront of optical scanning technology. Carefully and meticulously updated in each iteration, the book continues to be the most comprehensive scanning resource on the market. It examines the breadth and depth of subtopics in the field from a variety of perspectives. The Second Edition covers: Technologies such as piezoelectric devices Applications of laser scanning such as Ladar (laser radar) Underwater scanning and laser scanning in CTP As laser costs come down, and power and availability increase, the potential applications for laser scanning continue to increase. Bringing together the knowledge and experience of 26 authors from England, Japan and the United States, the book provides an excellent resource for understanding the principles of laser scanning. It illustrates the significance of scanning in society today and would help the user get started in developing system concepts using scanning. It can be used as an introduction to the field and as a reference for persons involved in any aspect of optical and laser beam scanning.




Handbook of Optical and Laser Scanning


Book Description

The Handbook of Optical and Laser Scanning reveals the fundamentals of controlling light beam deflection, factors in image fidelity and quality, and the newest technological developments currently impacting scanner system design and applications. This highly practical reference features a logical chapter organization, authoritative yet accessible writing, and hundreds of supporting illustrations. Contributions from 27 subject specialists from the United States, Europe, and Asia afford a valuable range of perspectives as well as global coverage of optical and laser beam scanning. With more than 550 works cited, this Handbook is essential for optical engineers, technologists, scientists, and undergraduate and graduate students in these disciplines. About the Editor: GERALD F. MARSHALL is a Consultant in Optical Design and Engineering, Niles, Michigan. Specializing in optical scanning and display systems, his extensive experience includes senior positions with Kaiser Electronics, San Jose, California; Energy Conversion Devices, Troy, Michigan; Axsys Technologies (formerly Speedring Systems), Rochester Hills, Michigan; and Medical Lasers, Burlington, Massachusetts. Previously he was engaged as a Senior R&D Engineer for airborne navigational display systems at Ferranti Ltd., Edinburgh, Scotland, and as a Physicist with Morganite International Ltd., London, England. The author of many papers, he holds a number of patents and is the editor of two internationally recognized reference books, Laser Beam Scanning and Optical Scanning (both titles, Marcel Dekker, Inc.). He is a Fellow of The Institute of Physics, the Optical Society of America, and SPIE-The International Society for Optical Engineering, of which he is a former director. He received the B.Sc. degree from London University, England.




Optical Scanning Holography with MATLAB®


Book Description

Optical Scanning Holography is an exciting new field with many potential novel applications. This book contains tutorials, research materials, as well as new ideas and insights that will be useful for those working in the field of optics and holography. The book has been written by one of the leading researchers in the field. It covers the basic principles of the topic which will make the book relevant for years to come.




Confocal Scanning Optical Microscopy and Related Imaging Systems


Book Description

This book provides a comprehensive introduction to the field of scanning optical microscopy for scientists and engineers. The book concentrates mainly on two instruments: the Confocal Scanning Optical Microscope (CSOM), and the Optical Interference Microscope (OIM). A comprehensive discussion of the theory and design of the Near-Field Scanning Optical Microscope (NSOM) is also given. The text discusses the practical aspects of building a confocal scanning optical microscope or optical interference microscope, and the applications of these microscopes to phase imaging, biological imaging, and semiconductor inspection and metrology.A comprehensive theoretical discussion of the depth and transverse resolution is given with emphasis placed on the practical results of the theoretical calculations and how these can be used to help understand the operation of these microscopes. - Provides a comprehensive introduction to the field of scanning optical microscopy for scientists and engineers - Explains many practical applications of scanning optical and interference microscopy in such diverse fields as biology and semiconductor metrology - Discusses in theoretical terms the origin of the improved depth and transverse resolution of scanning optical and interference microscopes with emphasis on the practical results of the theoretical calculations - Considers the practical aspects of building a confocal scanning or interference microscope and explores some of the design tradeoffs made for microscopes used in various applications - Discusses the theory and design of near-field optical microscopes - Explains phase imaging in the scanning optical and interference microscopes




Laser Beam Scanning


Book Description

Written in an easy-to-read style, this comprehensive guide examines the currentknowledge on opto-mechanical laser beam scanning technology.Combining theoretical and practical aspects, Laser Beam Scanning discusses theapplications, performance, and design of holographic, polygonal, galvanometric, andresonant scanning systems.Bringing together the expertise of leading international authorities, this invaluable sourceprovides unique coverage on gas bearings for rotating scanning devices and windageassociated with polygonal scanners. This work also includes authoritative information onGaussian beam diameters and optical design of components and systems relating tooptical disk data storage.Containing time-saving chapter introductions and summaries, numerous illustrations andtables, useful definitions, and up-to-date references, this handy, on-the-job reference aidsoptical engineers and designers, electronic, electrical, and laser engineers; physicists; andgraduate-level students in optical engineering courses to apply laser beam scanning tonew designs successfully.




High Resolution Imaging in Microscopy and Ophthalmology


Book Description

This open access book provides a comprehensive overview of the application of the newest laser and microscope/ophthalmoscope technology in the field of high resolution imaging in microscopy and ophthalmology. Starting by describing High-Resolution 3D Light Microscopy with STED and RESOLFT, the book goes on to cover retinal and anterior segment imaging and image-guided treatment and also discusses the development of adaptive optics in vision science and ophthalmology. Using an interdisciplinary approach, the reader will learn about the latest developments and most up to date technology in the field and how these translate to a medical setting. High Resolution Imaging in Microscopy and Ophthalmology – New Frontiers in Biomedical Optics has been written by leading experts in the field and offers insights on engineering, biology, and medicine, thus being a valuable addition for scientists, engineers, and clinicians with technical and medical interest who would like to understand the equipment, the applications and the medical/biological background. Lastly, this book is dedicated to the memory of Dr. Gerhard Zinser, co-founder of Heidelberg Engineering GmbH, a scientist, a husband, a brother, a colleague, and a friend.




Computational Optical Phase Imaging


Book Description

In this book, computational optical phase imaging techniques are presented along with Matlab codes that allow the reader to run their own simulations and gain a thorough understanding of the current state-of-the-art. The book focuses on modern applications of computational optical phase imaging in engineering measurements and biomedical imaging. Additionally, it discusses the future of computational optical phase imaging, especially in terms of system miniaturization and deep learning-based phase retrieval.