Optical Thin Films and Coatings


Book Description

Optical Thin Films and Coatings: From Materials to Applications, Second Edition, provides an overview of thin film materials and their properties, design and manufacture across a wide variety of application areas. Sections explore their design and manufacture and their unconventional features, including the scattering properties of random structures in thin films, optical properties at short wavelengths, thermal properties and color effects. Other chapters focus on novel materials, including organic optical coatings, surface multiplasmonics, optical thin films containing quantum dots, and optical coatings, including laser components, solar cells, displays and lighting, and architectural and automotive glass. The book presents a technical resource for researchers and engineers working with optical thin films and coatings. It is also ideal for professionals in the security, automotive, space and other industries who need an understanding of the topic. - Provides thorough review of applications of optical coatings including laser components, solar cells, glazing, displays and lighting - One-stop reference that addresses deposition techniques, properties, and applications of optical thin films and coatings - Novel methods, suggestions for analysis, and applications makes this a valuable resource for experts in the field as well




Optical Thin Films


Book Description

Practical, user-oriented reference for engineers who must incorporate and specify coatings for filters, antiglare effects, polarization, or other purposes in optical or electro-optical systems design. It focuses on preparation techniques and characteristics of commercially available products and provides information needed to determine what type of filter is needed to solve a particular problem, what its limitations are, and how to care for it.




Optical Coating Technology


Book Description

Baumeister organizes this book around the key subjects associated with functions of optical thin film performance, and provides a valuable resource in the field of thin film technology. The information is widely backed up with citations to patents and published literature. The author draws from 25 years of experience teaching classes at the UCLA Extension Program, and at companies worldwide to answer questions, such as: what are the conventions for a given analysis formalism? and, what other design approaches have been tried for this application?




Optical Thin Film Design


Book Description

Thin-film coatings are universal on optical components such as displays, lenses, mirrors, cameras, and windows and serve a variety of functions such as antireflection, high reflection, and spectral filtering. Designs can be as simple as a single-layer dielectric for antireflection effects or very complex with hundreds of layers for producing elaborate spectral filtering effects. Starting from basic principles of electromagnetics, design techniques are progressively introduced toward more intricate optical filter designs, numerical optimization techniques, and production methods, as well as emerging areas such as phase change materials and metal film optics. Worked examples, Python computer codes, and instructor problem sets are included. Key Features: Starting from the basic principles of electromagnetics, topics are built in a pedagogic manner toward intricate filter designs, numerical optimization and production methods. Discusses thin-film applications and design from simple single-layer effects to complex several-hundred-layer spectral filtering. Includes modern topics such as phase change materials and metal film optics. Includes worked examples, problem sets, and numerical examples with Python codes.




Optical Interference Coatings


Book Description

Designed to give a concise but complete overview of the field, this book features contributions written by leading experts in the various areas. Topics include design, materials, film growth, deposition including large area, characterization and monitoring, and mechanical stress.




Optical Coatings


Book Description

Optical coatings, i.e. multilayer stacks composed from a certain number of thin individual layers, are an essential part of any optical system necessary to tailor the properties of the optical surfaces. Hereby, the performance of any optical coating is defined by a well-balanced interplay between the properties of the individual coating materials and the geometrical parameters (such as film thickness) which define their arrangement. In all scientific books dealing with the performance of optical coatings, the main focus is on optimizing the geometrical coating parameters, particularly the number of individual layers and their thickness. At the same time, much less attention is paid to another degree of freedom in coating design, namely the possibility to tailor optical material properties to an optimum relevant for the required specification. This book, on the contrary, concentrates on the material aside of the problem. After a comprehensive review of the basics of thin film theory, traditional optical coating material properties and their relation to the efficiency of coating design methods, emphasis is placed on novel results concerning the application of material mixtures and nanostructured coatings in optical coating theory and practice, including porous layers, dielectric mixtures as well as metal island films for different applications.




The Physics of Thin Film Optical Spectra


Book Description

The present monograph represents itself as a tutorial to the ?eld of optical properties of thin solid ?lms. It is neither a handbook for the thin ?lm prac- tioner,noranintroductiontointerferencecoatingsdesign,norareviewonthe latest developments in the ?eld. Instead, it is a textbook which shall bridge the gap between ground level knowledge on optics, electrodynamics, qu- tummechanics,andsolidstatephysicsononehand,andthemorespecialized level of knowledge presumed in typical thin ?lm optical research papers on the other hand. In writing this preface, I feel it makes sense to comment on three points, which all seem to me equally important. They arise from the following (- tually interconnected) three questions: 1. Who can bene?t from reading this book? 2. What is the origin of the particular material selection in this book? 3. Who encouraged and supported me in writing this book? Let me start with the ?rst question, the intended readership of this book. It should be of use for anybody, who is involved into the analysis of - tical spectra of a thin ?lm sample, no matter whether the sample has been prepared for optical or other applications. Thin ?lm spectroscopy may be r- evant in semiconductor physics, solar cell development, physical chemistry, optoelectronics, and optical coatings development, to give just a few ex- ples. The book supplies the reader with the necessary theoretical apparatus for understanding and modelling the features of the recorded transmission and re?ection spectra.




Optical Properties of Thin Solid Films


Book Description

Authoritative reference treats the formation, structure, optical properties, and uses of thin solid films, emphasizing causes of their unusual qualities. 162 figures. 19 tables. 1955 edition.




Optical Thin Films and Structures


Book Description

The book is devoted to the design, application and characterization of thin films and structures, with special emphasis on optical applications. It comprises ten papers--five featured and five regular--authored by scientists all over the world. Diverse materials are studied and their possible applications are demonstrated and discussed--transparent conductive coatings and structures from ZnO doped with Al and Ga and Ti-doped SnO2, polymers and nanosized zeolite thin films for optical sensing, TiO2 with linear and nonlinear optical properties, organic diamagnetic materials, broadband optical coatings, CrWN glass molding coatings, and silicon on insulator waveguides.




Practical Design and Production of Optical Thin Films


Book Description

Providing insider viewpoints and perspectives unavailable in any other text, this book presents useful guidelines and tools to produce effective coatings and films. Covering subjects ranging from materials selection and process development to successful system construction and optimization, it contains expanded discussions on design visualization, dense wavelength division multiplexing, new coating equipment, electrochromic and chemically active coatings, ion-assisted deposition, and optical monitoring sensitivity. Furnishing real-world examples and know-how, the book introduces Fourier analysis and synthesis without difficult mathematical concepts and equations.