Optical Thin Films and Coatings


Book Description

Optical Thin Films and Coatings: From Materials to Applications, Second Edition, provides an overview of thin film materials and their properties, design and manufacture across a wide variety of application areas. Sections explore their design and manufacture and their unconventional features, including the scattering properties of random structures in thin films, optical properties at short wavelengths, thermal properties and color effects. Other chapters focus on novel materials, including organic optical coatings, surface multiplasmonics, optical thin films containing quantum dots, and optical coatings, including laser components, solar cells, displays and lighting, and architectural and automotive glass. The book presents a technical resource for researchers and engineers working with optical thin films and coatings. It is also ideal for professionals in the security, automotive, space and other industries who need an understanding of the topic. Provides thorough review of applications of optical coatings including laser components, solar cells, glazing, displays and lighting One-stop reference that addresses deposition techniques, properties, and applications of optical thin films and coatings Novel methods, suggestions for analysis, and applications makes this a valuable resource for experts in the field as well




Optical Thin Films and Structures


Book Description

The book is devoted to the design, application and characterization of thin films and structures, with special emphasis on optical applications. It comprises ten papers—five featured and five regular—authored by scientists all over the world. Diverse materials are studied and their possible applications are demonstrated and discussed—transparent conductive coatings and structures from ZnO doped with Al and Ga and Ti-doped SnO2, polymers and nanosized zeolite thin films for optical sensing, TiO2 with linear and nonlinear optical properties, organic diamagnetic materials, broadband optical coatings, CrWN glass molding coatings, and silicon on insulator waveguides.




Optical Properties of Thin Solid Films


Book Description

Authoritative reference treats the formation, structure, optical properties, and uses of thin solid films, emphasizing causes of their unusual qualities. 162 figures. 19 tables. 1955 edition.




Optical Thin Films and Structures


Book Description

The book is devoted to the design, application and characterization of thin films and structures, with special emphasis on optical applications. It comprises ten papers--five featured and five regular--authored by scientists all over the world. Diverse materials are studied and their possible applications are demonstrated and discussed--transparent conductive coatings and structures from ZnO doped with Al and Ga and Ti-doped SnO2, polymers and nanosized zeolite thin films for optical sensing, TiO2 with linear and nonlinear optical properties, organic diamagnetic materials, broadband optical coatings, CrWN glass molding coatings, and silicon on insulator waveguides.




The Physics of Thin Film Optical Spectra


Book Description

The present monograph represents itself as a tutorial to the ?eld of optical properties of thin solid ?lms. It is neither a handbook for the thin ?lm prac- tioner,noranintroductiontointerferencecoatingsdesign,norareviewonthe latest developments in the ?eld. Instead, it is a textbook which shall bridge the gap between ground level knowledge on optics, electrodynamics, qu- tummechanics,andsolidstatephysicsononehand,andthemorespecialized level of knowledge presumed in typical thin ?lm optical research papers on the other hand. In writing this preface, I feel it makes sense to comment on three points, which all seem to me equally important. They arise from the following (- tually interconnected) three questions: 1. Who can bene?t from reading this book? 2. What is the origin of the particular material selection in this book? 3. Who encouraged and supported me in writing this book? Let me start with the ?rst question, the intended readership of this book. It should be of use for anybody, who is involved into the analysis of - tical spectra of a thin ?lm sample, no matter whether the sample has been prepared for optical or other applications. Thin ?lm spectroscopy may be r- evant in semiconductor physics, solar cell development, physical chemistry, optoelectronics, and optical coatings development, to give just a few ex- ples. The book supplies the reader with the necessary theoretical apparatus for understanding and modelling the features of the recorded transmission and re?ection spectra.




Optical Thin Films and Coatings


Book Description

Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings and includes chapters on organic optical coatings, surface multiplasmonics and optical thin films containing quantum dots. Finally, applications of optical coatings, including laser components, solar cells, displays and lighting, and architectural and automotive glass, are reviewed in part four. Optical thin films and coatings is a technical resource for researchers and engineers working with optical thin films and coatings, professionals in the security, automotive, space and other industries requiring an understanding of these topics, and academics interested in the field. An overview of the materials, properties, design and manufacture of thin films Special attention is given to the unconventional features and novel materials of optical thin films Reviews applications of optical coatings including laser components, solar cells, glasing, displays and lighting







Optical Characterization of Thin Solid Films


Book Description

This book is an up-to-date survey of the major optical characterization techniques for thin solid films. Emphasis is placed on practicability of the various approaches. Relevant fundamentals are briefly reviewed before demonstrating the application of these techniques to practically relevant research and development topics. The book is written by international top experts, all of whom are involved in industrial research and development projects.




Optical Properties of Materials and Their Applications


Book Description

Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.




Handbook of Optical Properties


Book Description

Thin Films for Optical Coating emphasizes the applications of thin films, deposition of thin films, and thin film characterization. Unlike monographs on this subject, this book presents the views of many expert authors. Individual chapters span a wide arc of topics within this field of study. The book offers an introduction to usual and unusual applications of optical thin films, treating in a more qualitative way general topics such as anticounterfeiting coatings, decorative coatings, light switches, contrast enhancement coatings, multiplexers, optical memories, and more. Contributors review thin film media for optical data storage, UV broadband and narrow-band filters, and optically active thin film coatings. Ion beam sputtering and magnetron sputtering deposition methods are described in detail. Characterization techniques are provided, including Raman spectroscopy and absorption measurements. The book also offers theories on light scattering of thin dielectric films and the electromagnetic properties of nanocermet thin films. This reference incorporates recent research by the individual authors with their views of current developments in their respective fields. Of particular interest to the reader will be an assessment of the historical developments of thin film physics written by one of the fathers of thin film technology, Professor M. Auwärter.