Laser Beam Propagation Through Random Media


Book Description

Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus expanded analysis of free-space optical communication systems and imaging systems.




Laser Beam Propagation in Random Media


Book Description

"This research monograph is a companion edition and update to the book: (AP) L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, WA, 2005). We present several new and advanced topics that have emerged during the years since (AP) was published. Much of the new material is compared throughout the text with experimental and computer simulation data. This comparison includes beam wander and its effect on a propagating laser beam, including beam-wander-induced scintillation. Other additions include an assessment of conventional probability density function (PDF) models for the irradiance after passing through a finite receiver aperture. New mathematical models for enhanced backscatter are introduced here, including extension to strong fluctuation regimes and semi-rough targets. In recent years, scientists have found experimental evidence that non-Kolmogorov and anisotropic conditions may occur even along horizontal propagation paths near the ground. We include a chapter on these important topics that presents a detailed treatment involving both non-Kolmogorov and anisotropic models. The book ends with a chapter devoted to the discussion of commonly-used instruments for measuring atmospheric parameters like the refractive-index structure parameter, inner scale, temperature, wind speed, heat flux, and so forth"--




Laser Beam Propagation in Nonlinear Optical Media


Book Description

"This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then this book will be a welcome addition to their bookshelf." —Richard Sutherland, Mount Vernon Nazarene University, Ohio, USA Laser Beam Propagation in Nonlinear Optical Media provides a collection of expressions, equations, formulas, and derivations used in calculating laser beam propagation through linear and nonlinear media which are useful for predicting experimental results. The authors address light propagation in anisotropic media, oscillation directions of the electric field and displacement vectors, the walk-off angles between the Poynting and propagation vectors, and effective values of the d coefficient for biaxial, uniaxial, and isotropic crystals. They delve into solutions of the coupled three wave mixing equations for various nonlinear optical processes, including quasi-phase matching and optical parametric oscillation, and discuss focusing effects and numerical techniques used for beam propagation analysis in nonlinear media, and phase retrieval technique. The book also includes examples of MATLAB and FORTRAN computer programs for numerical evaluations. An ideal resource for students taking graduate level courses in nonlinear optics, Laser Beam Propagation in Nonlinear Optical Media can also be used as a reference for practicing professionals.




Laser Beam Propagation


Book Description

How do laser beams propagate? Innovative discoveries involving laser beams and their propagation properties are at the heart of Laser Beam Propagation: Generation and Propagation of Customized Light. This book captures the essence of laser beam propagation. Divided into three parts, it explores the fundamentals of how laser beams propagate, and provides novel methods to describe and characterize general laser beams. Part one covers the physical optics approach to the propagation of optical waves, the concept of plane waves, the mathematical description of diffraction and Gaussian optics, and adapting the concepts to the single photon level. The book explains the parallels between the paraxial propagation of light beams and the Schrödinger equation in quantum mechanics, and delves into the description of paraxial optics by means of state vectors and operators. It also discusses classical optics and quantum entanglement. Part two focuses on the application of modal decomposition to the characterization of laser beams, and provides a characterization of time domain pulses. It discusses tools for the temporal characterization of laser beams, the generation of arbitrary laser beams with digital holograms, and the use of spatial light modulators to display reconfigurable digital holograms capable of modifying and shaping laser beams. It also covers various techniques and the control of the polarization properties of light. Part three defines the most commonly generated shaped light, flat-top beams, outlining their propagation rules as well as the means to create them in the laboratory. It also highlights Helmholtz-Gauss beams, vector beams, and low coherence laser beams. The text presents the concepts of coherence theory and applies this to the propagation of low coherence optical fields. It also considers the recent developments in orbital angular momentum carrying fields, touches on basics properties, definitions and applications, and brings together the classical and quantum concepts of spatial modes of light.




Laser Beam Shaping


Book Description

Laser Beam Shaping: Theory and Techniques addresses the theory and practice of every important technique for lossless beam shaping. Complete with experimental results as well as guidance on when beam shaping is practical and when each technique is appropriate, the Second Edition is updated to reflect significant developments in the field. This authoritative text: Features new chapters on axicon light ring generation systems, laser-beam-splitting (fan-out) gratings, vortex beams, and microlens diffusers Describes the latest advances in beam profile measurement technology and laser beam shaping using diffractive diffusers Contains new material on wavelength dependence, channel integrators, geometrical optics, and optical software Laser Beam Shaping: Theory and Techniques, Second Edition not only provides a working understanding of the fundamentals, but also offers insight into the potential application of laser-beam-profile shaping in laser system design.




Laser Beam Shaping Applications


Book Description

The practice of shaping the irradiance profile of laser beams goes back more than three decades, and the applications of beam shaping are as diverse as they are numerous. However, until Dickey and Holswade's groundbreaking and highly popular Laser Beam Shaping: Theory and Techniques was published, there was no single, detailed treatment available on the underlying theory and basic techniques of beam shaping. Building on the foundations of this previous work, these esteemed editors have teamed with recognized expert David L. Shealy to produce the first in-depth account of beam shaping applications and design. Laser Beam Shaping Applications details the important features of beam shaping and exposes the subtleties of the theory and techniques that are best demonstrated through proven applications. In chapters contributed by prominent, active leaders in their respective specialties, the book discusses applications in lithography, laser printing, optical data storage, stable isotope separation, adaptive mirrors, and spatially dispersive lasers. The contributors share major insights, knowledge, and experience, reveal the advantages of the technologies, and include extensive references to the literature. The book concludes with a summary of beam shaping theory and techniques as well as the history of the field. Providing practical expertise, Laser Beam Shaping Applications is an extremely helpful guide to improving current laser processes, optimizing application-specific technologies, and advancing future development in the field.




Numerical/Optical Simulation of Laser Beam Propagation Through Atmospheric Turbulence


Book Description

In this project, computer simulation and optical modeling of laser beam propagation through the turbulent atmosphere, as well as development of techniques using photorefractive crystals to mitigate phase distortions in laser beams, have been done. In the framework of the first direction the mathematical methods and computational schemes based on split step operators, phase screen model and the Monte Carlo method have been elaborated. Spatial statistics of light field in laser beam has been studied in relation to inner and outer scales for different models of atmospheric turbulence. Regimes of weak, moderate and strong fluctuations have been considered. In the framework of the second direction the possibility of simulation of double pass and anisoplanatic effects by means of few phase screens has been studied. An experimental set up for optical modeling anisoplanatic effects by the use of dynamic phase modulator has been designed. A method of generation of random optical field with variable correlation function has been proposed and tested. In the framework of the third direction the problem of mitigation of distorted optical signals in photorefractive crystals has been studied. An optimal effective operating range of one way system, based on nonlinear interaction of distorted signal with pumping formed by spatial filtering of the signal, has been found. Using the criterion of maximal mitigation of phase and amplitude distortions, the schemes of two and four beam interaction in InP:Fe have been optimized.




Laser Beam Propagation in the Atmosphere


Book Description

With contributions by numerous experts




Random Light Beams


Book Description

Random Light Beams: Theory and Applications contemplates the potential in harnessing random light. This book discusses light matter interactions, and concentrates on the various phenomena associated with beam-like fields. It explores natural and man-made light fields and gives an overview of recently introduced families of random light beams. It outlines mathematical tools for analysis, suggests schemes for realization, and discusses possible applications. The book introduces the essential concepts needed for a deeper understanding of the subject, discusses various classes of deterministic paraxial beams and examines random scalar beams. It highlights electromagnetic random beams and matters relating to generation, propagation in free space and various media, and discusses transmission through optical systems. It includes applications that benefit from the use of random beams, as well as the interaction of beams with deterministic optical systems. • Includes detailed mathematical description of different model sources and beams • Explores a wide range of man-made and natural media for beam interaction • Contains more than 100 illustrations on beam behavior • Offers information that is based on the scientific results of the last several years • Points to general methods for dealing with random beams, on the basis of which the readers can do independent research It gives examples of light propagation through the human eye, laser resonators, and negative phase materials. It discusses in detail propagation of random beams in random media, the scattering of random beams from collections of scatterers and thin random layers as well as the possible uses for these beams in imaging, tomography, and smart illumination.