Recent Developments in the Solution of Nonlinear Differential Equations


Book Description

Nonlinear differential equations are ubiquitous in computational science and engineering modeling, fluid dynamics, finance, and quantum mechanics, among other areas. Nowadays, solving challenging problems in an industrial setting requires a continuous interplay between the theory of such systems and the development and use of sophisticated computational methods that can guide and support the theoretical findings via practical computer simulations. Owing to the impressive development in computer technology and the introduction of fast numerical methods with reduced algorithmic and memory complexity, rigorous solutions in many applications have become possible. This book collects research papers from leading world experts in the field, highlighting ongoing trends, progress, and open problems in this critically important area of mathematics.




Methods of Mathematical Modelling


Book Description

This book features original research articles on the topic of mathematical modelling and fractional differential equations. The contributions, written by leading researchers in the field, consist of chapters on classical and modern dynamical systems modelled by fractional differential equations in physics, engineering, signal processing, fluid mechanics, and bioengineering, manufacturing, systems engineering, and project management. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate level students, educators, researchers, and scientists interested in mathematical modelling and its diverse applications. Features Presents several recent developments in the theory and applications of fractional calculus Includes chapters on different analytical and numerical methods dedicated to several mathematical equations Develops methods for the mathematical models which are governed by fractional differential equations Provides methods for models in physics, engineering, signal processing, fluid mechanics, and bioengineering Discusses real-world problems, theory, and applications




Canadian Theses


Book Description







Distributed Parameter Control Systems


Book Description

Distributed Parameter Control Systems: Theory and Application is a two-part book consisting of 10 theoretical and five application-oriented chapters contributed by well-known workers in the distributed-parameter systems. The book covers topics of distributed parameter control systems in the areas of simulation, identification, state estimation, stability, control (optimal, stochastic, and coordinated), numerical approximation methods, optimal sensor, and actuator positioning. Five applications works include chemical reactors, heat exchangers, petroleum reservoirs/aquifers, and nuclear reactors. The text will be a useful reference for both graduate students and professional researchers working in the field.




Nonlinear Systems Of Partial Differential Equations: Applications To Life And Physical Sciences


Book Description

The book presents the theory of diffusion-reaction equations starting from the Volterra-Lotka systems developed in the eighties for Dirichlet boundary conditions. It uses the analysis of applicable systems of partial differential equations as a starting point for studying upper-lower solutions, bifurcation, degree theory and other nonlinear methods. It also illustrates the use of semigroup, stability theorems and W2ptheory. Introductory explanations are included in the appendices for non-expert readers.The first chapter covers a wide range of steady-state and stability results involving prey-predator, competing and cooperating species under strong or weak interactions. Many diagrams are included to easily understand the description of the range of parameters for coexistence. The book provides a comprehensive presentation of topics developed by numerous researchers. Large complex systems are introduced for modern research in ecology, medicine and engineering.Chapter 3 combines the theories of earlier chapters with the optimal control of systems involving resource management and fission reactors. This is the first book to present such topics at research level. Chapter 4 considers persistence, cross-diffusion, and boundary induced blow-up, etc. The book also covers traveling or systems of waves, coupled Navier-Stokes and Maxwell systems, and fluid equations of plasma display. These should be of interest to life and physical scientists.




Current Trends in Dynamical Systems in Biology and Natural Sciences


Book Description

This book disseminates the latest results and envisages new challenges in the application of mathematics to various practical situations in biology, epidemiology, and ecology. It comprises a collection of the main results presented at the Ninth Edition of the International Workshop “Dynamical Systems Applied to Biology and Natural Sciences – DSABNS”, held from 7 to 9 February 2018 at the Department of Mathematics, University of Turin, Italy. While the principal focus is ecology and epidemiology, the coverage extends even to waste recycling and a genetic application. The topics covered in the 12 peer-reviewed contributions involve such diverse mathematical tools as ordinary and partial differential equations, delay equations, stochastic equations, control, and sensitivity analysis. The book is intended to help both in disseminating the latest results and in envisaging new challenges in the application of mathematics to various practical situations in biology, epidemiology, and ecology.




Aerospace Medicine and Biology


Book Description

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA).




Basic Theory Of Fractional Differential Equations (Third Edition)


Book Description

This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.