Optimal Materials and Deposition Technique Lead to Cost-Effective Solar Cell with Best-Ever Conversion Efficiency (Fact Sheet).


Book Description

This fact sheet describes how the SJ3 solar cell was invented, explains how the technology works, and why it won an R & D 100 Award. Based on NREL and Solar Junction technology, the commercial SJ3 concentrator solar cell - with 43.5% conversion efficiency at 418 suns - uses a lattice-matched multijunction architecture that has near-term potential for cells with H"0% efficiency. Multijunction solar cells have higher conversion efficiencies than any other type of solar cell. But developers of utility-scale and space applications crave even better efficiencies at lower costs to be both cost-effective and able to meet the demand for power. The SJ3 multijunction cell, developed by Solar Junction with assistance from foundational technological advances by the National Renewable Energy Laboratory, has the highest efficiency to date - almost 2% absolute more than the current industry standard multijunction cell-yet at a comparable cost. So what did it take to create this cell having 43.5% efficiency at 418-sun concentration? A combination of materials with carefully designed properties, a manufacturing technique allowing precise control, and an optimized device design.




Rational Design of Solar Cells for Efficient Solar Energy Conversion


Book Description

An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.




Printable Solar Cells


Book Description

Printable Solar Cells The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.




Harvesting Solar Energy


Book Description

This book deals with existing technologies of solar energy conversion as well as novel methods under consideration in academic and commercial R&D sites. The experimental results presented in the work are well crafted by both analytical and first-principle numerical simulations. The book highlights the real potential for economically justified use of solar energy at every household and/or commercial solar farms. The ever-improving methods of thin-film epitaxial growth combined with a better understanding of the sun light absorption and antireflection are highlighted. While there was a period when the material quality was considered to be cornerstone of the conversion efficiency followed by substantial efforts to optimize multiple-cell architecture, it became clear that many old ideas such as variable band gap, multi-junction intrinsic region, as well as solar tracking mechanisms offer new possibilities for improved harvesting of energy. Amplifying the importance of materials selection efficient design of the photo-voltaic elements various aspects of the production cost and the impact on the environment are discussed. In addition, the eligibility of the proposed production technologies in the current photovoltaic market are evaluated and confirmed.




Fabrication and Characterization of Low Cost Solar Cells based on Earth Abundant Materials for Sustainable Photovoltaics


Book Description

The low cost and low temperature electrochemical deposition technique was employed to grow Cu2O thin films and ZnO:Al thin films were deposited by d.c. magnetron sputtering in order to fabricate solar cells. The potentiostatic and galvanostatic electrodeposition modes were used to deposit the Cu2O thin films. Raman spectra of thin films have shown characteristic frequencies of crystalline Cu2O. The contact between Cu2O and Au is found to be an Ohmic contact. The devices grown by a potentiostatic mode have higher efficiency than those grown by a galvanostatic mode. The optimum thickness of Cu2O thin films as an absorber layer in solar cells. was found to be around 3 µm respect to a high efficiency. Flexible and light weight solar cell was fabricated on plastic substrate.










Physics Briefs


Book Description




Development of Non-vacuum and Low-cost Techniques for Cu(In, Ga)(Se, S)2 Thin Film Solar Cell Processing


Book Description

Solar photovoltaic modules provide clean electricity from sunlight but will not be able tocompete on an open market until the cost of the electricity they produce is comparable to thatproduced by traditional methods. At present, modules based on crystalline silicon wafer solarcells account for nearly 90% of photovoltaic production capacity. However, it is anticipatedthat the ultimate cost reduction achievable for crystalline silicon solar cell production will besomewhat limited and that thin film solar cells may offer a cheaper alternative in the longterm. The highest energy conversion efficiencies reported for thin film solar cells have beenfor devices based around chalcopyrite Cu(In, Ga)(Se, S)2 photovoltaic absorbers. The most efficient Cu(In, Ga)(Se, S)2 solar cells contain absorber layers deposited by vacuumco-evaporation of the elements. However, the cost of ownership of large area vacuumevaporation technology is high and may be a limiting factor in the cost reductions achievablefor Cu(In, Ga)(Se, S)2 based solar cells. Therefore, many alternative deposition methods areunder investigation. Despite almost thirty companies being in the process of commercialisingthese technologies there is no consensus as to which deposition method will lead to the mostcost effective product. Non-vacuum deposition techniques involving powders and chemical solutions potentiallyoffer significant reductions in the cost of Cu(In, Ga)(Se, S)2 absorber layer deposition ascompared to their vacuum counterparts. A wide range of such approaches has beeninvestigated for thirty years and the gap between the world record Cu(In, Ga)(Se, S)2 solarcell and the best devices containing non-vacuum deposited absorber layers has closedsignificantly in recent years. Nevertheless, no one technique has demonstrated its superiorityand the best results are still achieved with some of the most complex approaches. The work presented here involved the development and investigation of a new process forperforming one of the stages of non-vacuum deposition of Cu(In, Ga)(Se, S)2 absorber layers. The new process incorporates copper into an initial Group III-VI precursor layer, e.g. indiumgallium selenide, through an ion exchange reaction performed in solution. The ion exchangereaction requires only very simple, low-cost equipment and proceeds at temperatures over1000?C lower than required for the evaporation of Cu under vacuum. In the new process, indium (gallium) selenide initial precursor layers are immersed insolutions containing Cu ions. During immersion an exchange reaction occurs and Cu ionsfrom the solution exchange places with Group III ions in the layer. This leads to theformation of an intimately bonded, laterally homogeneous copper selenide? indium (gallium)selenide modified precursor layer with the same morphology as the initial precursor. These modified precursor layers were converted to single phase chalcopyrite CuInSe2 andCu(In, Ga)Se2 by annealing with Se in a tube furnace system. Investigation of the annealingtreatment revealed that a series of phase transformations, beginning at low temperature, leadto chalcopyrite formation. Control of the timing of the Se supply was demonstrated toprevent reactions that were deemed detrimental to the morphology of the resultingchalcopyrite layers. When vacuum evaporated indium (gallium) selenide layers were used asinitial precursors, solar cells produced from the absorber layers exhibited energy conversionefficiencies of up to 4%. While these results are considered promising, the devices werecharacterised by very low open circuit voltages and parallel resistances. Rapid thermal processing was applied to the modified precursor layers in an attempt tofurther improve their conversion into chalcopyrite material. Despite only a small number ofsolar cells being fabricated using rapid thermal processing, improvements in open circuitvoltage of close to 150mV were achieved. However, due to increases in series resistance andreductions in current collection only small increases in solar cell efficiency were recorded. Rapid thermal processing was also used to demonstrate synthesis of single phase CuInS2from modified precursor layers based on non-vacuum deposited indium sulphide. Non-vacuum deposition methods provide many opportunities for the incorporation ofundesirable impurities into the deposited layers. Analysis of the precursor layers developedduring this work revealed that alkali atoms from the complexant used in the ion exchangebaths are incorporated into the precursor layers alongside the Cu. Alkali atoms exhibitpronounced electronic and structural effects on Cu(In, Ga)Se2 layers and are beneficial in lowconcentrations. However, excess alkali atoms are detrimental to Cu(In, Ga)Se2 solar cellperformance and the problems encountered with cells produced here are consistent with theeffects reported in the literature for excess alkali incorporation. It is therefore expected thatfurther improvements in solar cell efficiency might be achieved following reformulation ofthe ion exchange bath chemistry.




Solar Energy Update


Book Description